Inverse Schrödinger scattering in three dimensions
著者
書誌事項
Inverse Schrödinger scattering in three dimensions
(Texts and monographs in physics)
Springer-Verlag, c1989 , [Amazon.co.jp]
- : softcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Bibliography: p. [159]-163
Includes index
Softcover reprint of the hardcover 1st edition 1989
巻末に"Printed in Japan 落丁、乱丁本のお問い合わせはAmazon.co.jpカスタマーサービスへ"とあり
内容説明・目次
内容説明
Most of the laws of physics are expressed in the form of differential equations; that is our legacy from Isaac Newton. The customary separation of the laws of nature from contingent boundary or initial conditions, which has become part of our physical intuition, is both based on and expressed in the properties of solutions of differential equations. Within these equations we make a further distinction: that between what in mechanics are called the equations of motion on the one hand and the specific forces and shapes on the other. The latter enter as given functions into the former. In most observations and experiments the "equations of motion," i. e. , the structure of the differential equations, are taken for granted and it is the form and the details of the forces that are under investigation. The method by which we learn what the shapes of objects and the forces between them are when they are too small, too large, too remote, or too inaccessi ble for direct experimentation, is to observe their detectable effects. The question then is how to infer these properties from observational data. For the theoreti cal physicist, the calculation of observable consequences from given differential equations with known or assumed forces and shapes or boundary conditions is the standard task of solving a "direct problem. " Comparison of the results with experiments confronts the theoretical predictions with nature.
目次
I Use of the Scattering Solution.- 1. The Direct Scattering Problem.- 1.1 The Scattering Solution.- 1.2 Exceptional Points.- 1.3 Completeness.- 1.4 Asymptotics for Large |k|.- 1.5 Scattering Amplitude and S Matrix.- 1.6 Angular Momentum Projections.- 1.7 Proofs.- 1.8 Notes.- 2. The Inverse Problem.- 2.1 Introduction and Uniqueness.- 2.2 A First Approach.- 2.3 The Riemann-Hilbert Problem.- 2.3.1 No Bound States.- 2.3.2 Bound States.- 2.4 The x-dependence.- 2.4.1 Proofs.- 2.5 Variational Principles.- 2.6 The Jost Function.- 2.6.1 The Reduction Method.- 2.6.2 Solution Procedure.- 2.6.3 Angular Momentum Projections.- 2.6.4 Proofs.- 2.7 Perturbations and Stability.- 2.8 A Representation of the Potential.- 2.9 Miscellaneous Methods.- 2.10 Notes.- II Use of the Regular and Standing-Wave Solutions.- 3. The Regular Solution.- 3.1 How to Define a Regular Solution.- 3.2 Properties of the Regular Solution.- 3.2.1 Proof of Lemma 3.2.3.- 3.3 Completeness.- 3.4 Notes.- 4. The Inverse Problem.- 4.1 Generalized Gel'fand-Levitan Equations.- 4.2 An Example.- 4.3 Reduction to Central Potentials.- 4.4 Notes.- 5. Standing-Wave Solutions.- 5.1 The K-matrix.- 5.2 The
$$\mathop \partial \limits^ - $$
-method.- 5.3 The Inverse Problem.- 5.4 Notes.- III Use of the Faddeev Solution.- 6. Faddeev's Solution.- 6.1 The Green's Function.- 6.2 The Integral Equation.- 6.2.1 Proofs.- 6.3 Exceptional Points.- 6.4 Large-r Asymptotics and Scattering.- 6.5 Notes.- 7. The Inverse Problem.- 7.1 The Scattering Amplitude as Input.- 7.2 A Gel'fand-Levitan Procedure.- 7.2.1 Completeness.- 7.2.2 The Povzner-Levitan Kernel.- 7.2.3 The Gel'fand-Levitan-Faddeev Equation.- 7.2.4 Proofs.- 7.3 A Marchenko Procedure.- 7.4 The
$$
\mathop \partial \limits^ -
$$
-approach.- 7.5 Notes.- References.- Index of Symbols.
「Nielsen BookData」 より