Time optimal control of evolution equations
Author(s)
Bibliographic Information
Time optimal control of evolution equations
(Progress in nonlinear differential equations and their applications / editor, Haim Brezis, v. 92)
Birkhäuser , Springer, c2018
- : pbk.
Available at 2 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Other authors: Lijuan Wang, Yashan Xu, Yubiao Zhang
Includes bibliographical references and index
Description and Table of Contents
Description
This monograph develops a framework for time-optimal control problems, focusing on minimal and maximal time-optimal controls for linear-controlled evolution equations. Its use in optimal control provides a welcome update to Fattorini's work on time-optimal and norm-optimal control problems. By discussing the best way of representing various control problems and equivalence among them, this systematic study gives readers the tools they need to solve practical problems in control.
After introducing preliminaries in functional analysis, evolution equations, and controllability and observability estimates, the authors present their time-optimal control framework, which consists of four elements: a controlled system, a control constraint set, a starting set, and an ending set. From there, they use their framework to address areas of recent development in time-optimal control, including the existence of admissible controls and optimal controls, Pontryagin's maximum principle for optimal controls, the equivalence of different optimal control problems, and bang-bang properties.
This monograph will appeal to researchers and graduate students in time-optimal control theory, as well as related areas of controllability and dynamic programming. For ease of reference, the text itself is self-contained on the topic of time-optimal control. Frequent examples throughout clarify the applications of theorems and definitions, although experience with functional analysis and differential equations will be useful.
Table of Contents
Preface.- Mathematical Preliminaries.- Time Optimal Control Problems.- Existence of Admissible Groups and Optimal Groups.- Maximum Principle of Optimal Groups.- Equivalence of Several Kinds of Optimal Controls.- Bang-Bang Properties of Optimal Groups.- References.
by "Nielsen BookData"