Entropy and free energy in structural biology : from thermodynamics, statistical mechanics and computer simulation

著者

    • Meirovitch, Hagai

書誌事項

Entropy and free energy in structural biology : from thermodynamics, statistical mechanics and computer simulation

Hagai Meirovitch

(Foundations of biochemistry and biophysics series)

CRC Press, 2020

  • hbk.

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

- It provides a rigorous mathematical and physical basis to techniques that are often introduced on empirical basis - While the book covers a broad range of techniques, it starts at a basic theoretical level. This gives the book a strong foundation and makes it accessible to students from various backgrounds. - Has a computational focus unlike many competing titles

目次

Contents Preface ..................................................................................................................................................... xv Acknowledgments ...................................................................................................................................xix Author .....................................................................................................................................................xxi Section I Probability Theory 1. Probability and Its Applications ..................................................................................................... 3 1.1 Introduction ............................................................................................................................. 3 1.2 Experimental Probability ........................................................................................................ 3 1.3 The Sample Space Is Related to the Experiment .................................................................... 4 1.4 Elementary Probability Space ................................................................................................ 5 1.5 Basic Combinatorics ............................................................................................................... 6 1.5.1 Permutations ............................................................................................................. 6 1.5.2 Combinations ............................................................................................................ 7 1.6 Product Probability Spaces ..................................................................................................... 9 1.6.1 The Binomial Distribution .......................................................................................11 1.6.2 Poisson Theorem ......................................................................................................11 1.7 Dependent and Independent Events ...................................................................................... 12 1.7.1 Bayes Formula......................................................................................................... 12 1.8 Discrete Probability-Summary .......................................................................................... 13 1.9 One-Dimensional Discrete Random Variables ..................................................................... 13 1.9.1 The Cumulative Distribution Function ....................................................................14 1.9.2 The Random Variable of the Poisson Distribution ..................................................14 1.10 Continuous Random Variables ..............................................................................................14 1.10.1 The Normal Random Variable ................................................................................ 15 1.10.2 The Uniform Random Variable .............................................................................. 15 1.11 The Expectation Value ...........................................................................................................16 1.11.1 Examples ..................................................................................................................16 1.12 The Variance ..........................................................................................................................17 1.12.1 The Variance of the Poisson Distribution ................................................................18 1.12.2 The Variance of the Normal Distribution ................................................................18 1.13 Independent and Uncorrelated Random Variables ............................................................... 19 1.13.1 Correlation .............................................................................................................. 19 1.14 The Arithmetic Average ....................................................................................................... 20 1.15 The Central Limit Theorem .................................................................................................. 21 1.16 Sampling ............................................................................................................................... 23 1.17 Stochastic Processes-Markov Chains ................................................................................ 23 1.17.1 The Stationary Probabilities ................................................................................... 25 1.18 The Ergodic Theorem ........................................................................................................... 26 1.19 Autocorrelation Functions .................................................................................................... 27 1.19.1 Stationary Stochastic Processes .............................................................................. 28 Homework for Students .................................................................................................................... 28 A Comment about Notations ............................................................................................................ 28 References ........................................................................................................................................ 29 Section II Equilibrium Thermodynamics and Statistical Mechanics 2. Classical Thermodynamics ........................................................................................................... 33 2.1 Introduction ........................................................................................................................... 33 2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems .................................. 33 2.3 Equilibrium and Reversible Transformations ....................................................................... 34 2.4 Ideal Gas Mechanical Work and Reversibility ..................................................................... 34 2.5 The First Law of Thermodynamics ...................................................................................... 36 2.6 Joule's Experiment ................................................................................................................ 37 2.7 Entropy .................................................................................................................................. 39 2.8 The Second Law of Thermodynamics .................................................................................. 40 2.8.1 Maximal Entropy in an Isolated System..................................................................41 2.8.2 Spontaneous Expansion of an Ideal Gas and Probability ....................................... 42 2.8.3 Reversible and Irreversible Processes Including Work ........................................... 42 2.9 The Third Law of Thermodynamics .................................................................................... 43 2.10 Thermodynamic Potentials ................................................................................................... 43 2.10.1 The Gibbs Relation ................................................................................................. 43 2.10.2 The Entropy as the Main Potential ......................................................................... 44 2.10.3 The Enthalpy ........................................................................................................... 45 2.10.4 The Helmholtz Free Energy .................................................................................... 45 2.10.5 The Gibbs Free Energy ........................................................................................... 45 2.10.6 The Free Energy, H(T, ) ........................................................................................ 46 2.11 Maximal Work in Isothermal and Isobaric Transformations ............................................... 47 2.12 Euler's Theorem and Additional Relations for the Free Energies ........................................ 48 2.12.1 Gibbs-Duhem Equation .......................................................................................... 49 2.13 Summary ............................................................................................................................... 49 Homework for Students .................................................................................................................... 49 References ........................................................................................................................................ 49 Further Reading ................................................................................................................................ 49 3. From Thermodynamics to Statistical Mechanics ........................................................................51 3.1 Phase Space as a Probability Space .......................................................................................51 3.2 Derivation of the Boltzmann Probability ............................................................................. 52 3.3 Statistical Mechanics Averages ............................................................................................ 54 3.3.1 The Average Energy ................................................................................................ 54 3.3.2 The Average Entropy .............................................................................................. 54 3.3.3 The Helmholtz Free Energy .................................................................................... 55 3.4 Various Approaches for Calculating Thermodynamic Parameters ...................................... 55 3.4.1 Thermodynamic Approach ..................................................................................... 55 3.4.2 Probabilistic Approach ........................................................................................... 56 3.5 The Helmholtz Free Energy of a Simple Fluid ..................................................................... 56 Reference .......................................................................................................................................... 58 Further Reading ................................................................................................................................ 58 4. Ideal Gas and the Harmonic Oscillator ....................................................................................... 59 4.1 From a Free Particle in a Box to an Ideal Gas ...................................................................... 59 4.2 Properties of an Ideal Gas by the Thermodynamic Approach ............................................. 60 4.3 The chemical potential of an Ideal Gas ................................................................................ 62 4.4 Treating an Ideal Gas by the Probability Approach ............................................................. 63 4.5 The Macroscopic Harmonic Oscillator ................................................................................ 64 4.6 The Microscopic Oscillator .................................................................................................. 65 4.6.1 Partition Function and Thermodynamic Properties ............................................... 66 4.7 The Quantum Mechanical Oscillator ................................................................................... 68 4.8 Entropy and Information in Statistical Mechanics ............................................................... 71 4.9 The Configurational Partition Function ................................................................................ 71 Homework for Students .................................................................................................................... 72 References ........................................................................................................................................ 72 Further Reading ................................................................................................................................ 72 5. Fluctuations and the Most Probable Energy ............................................................................... 73 5.1 The Variances of the Energy and the Free Energy ............................................................... 73 5.2 The Most Contributing Energy E* ....................................................................................... 74 5.3 Solving Problems in Statistical Mechanics .......................................................................... 76 5.3.1 The Thermodynamic Approach .............................................................................. 77 5.3.2 The Probabilistic Approach .................................................................................... 78 5.3.3 Calculating the Most Probable Energy Term .......................................................... 79 5.3.4 The Change of Energy and Entropy with Temperature .......................................... 80 References ........................................................................................................................................ 81 6. Various Ensembles ......................................................................................................................... 83 6.1 The Microcanonical (petit) Ensemble .................................................................................. 83 6.2 The Canonical (NVT) Ensemble ........................................................................................... 84 6.3 The Gibbs (NpT) Ensemble .................................................................................................. 85 6.4 The Grand Canonical ( VT) Ensemble ................................................................................ 88 6.5 Averages and Variances in Different Ensembles .................................................................. 90 6.5.1 A Canonical Ensemble Solution (Maximal Term Method) .................................... 90 6.5.2 A Grand-Canonical Ensemble Solution .................................................................. 91 6.5.3 Fluctuations in Different Ensembles....................................................................... 91 References ........................................................................................................................................ 92 Further Reading ................................................................................................................................ 92 7. Phase Transitions ........................................................................................................................... 93 7.1 Finite Systems versus the Thermodynamic Limit ................................................................ 93 7.2 First-Order Phase Transitions ............................................................................................... 94 7.3 Second-Order Phase Transitions ........................................................................................... 95 References ........................................................................................................................................ 98 8. Ideal Polymer Chains ..................................................................................................................... 99 8.1 Models of Macromolecules ................................................................................................... 99 8.2 Statistical Mechanics of an Ideal Chain ............................................................................... 99 8.2.1 Partition Function and Thermodynamic Averages ............................................... 100 8.3 Entropic Forces in an One-Dimensional Ideal Chain..........................................................101 8.4 The Radius of Gyration ...................................................................................................... 104 8.5 The Critical Exponent ...................................................................................................... 105 8.6 Distribution of the End-to-End Distance ............................................................................ 106 8.6.1 Entropic Forces Derived from the Gaussian Distribution .................................... 107 8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem .... 108 8.8 Ideal Chains and the Random Walk ................................................................................... 109 8.9 Ideal Chain as a Model of Reality .......................................................................................110 References .......................................................................................................................................110 9. Chains with Excluded Volume .....................................................................................................111 9.1 The Shape Exponent for Self-avoiding Walks ..................................................................111 9.2 The Partition Function .........................................................................................................112 9.3 Polymer Chain as a Critical System ....................................................................................113 9.4 Distribution of the End-to-End Distance .............................................................................114 9.5 The Effect of Solvent and Temperature on the Chain Size .................................................115 9.5.1 Chains in d = 3 ...................................................................................................116 9.5.2 Chains in d = 2 ...................................................................................................116 9.5.3 The Crossover Behavior Around .........................................................................117 9.5.4 The Blob Picture ....................................................................................................118 9.6 Summary ..............................................................................................................................119 References .......................................................................................................................................119 Section III Topics in Non-Equilibrium Thermodynamics and Statistical Mechanics 10. Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics .............. 123 10.1 Introduction ......................................................................................................................... 123 10.2 Sampling the Energy and Entropy and New Notations ...................................................... 124 10.3 More About Importance Sampling ..................................................................................... 125 10.4 The Metropolis Monte Carlo Method ................................................................................. 126 10.4.1 Symmetric and Asymmetric MC Procedures ....................................................... 127 10.4.2 A Grand-Canonical MC Procedure ...................................................................... 128 10.5 Efficiency of Metropolis MC .............................................................................................. 129 10.6 Molecular Dynamics in the Microcanonical Ensemble ......................................................131 10.7 MD Simulations in the Canonical Ensemble ...................................................................... 134 10.8 Dynamic MD Calculations ..................................................................................................135 10.9 Efficiency of MD .................................................................................................................135 10.9.1 Periodic Boundary Conditions and Ewald Sums .................................................. 136 10.9.2 A Comment About MD Simulations and Entropy................................................ 136 References ...................................................................................................................................... 137 11. Non-Equilibrium Thermodynamics-Onsager Theory .......................................................... 139 11.1 Introduction ......................................................................................................................... 139 11.2 The Local-Equilibrium Hypothesis .................................................................................... 139 11.3 Entropy Production Due to Heat Flow in a Closed System ................................................ 140 11.4 Entropy Production in an Isolated System...........................................................................141 11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities ..................................142 11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium .......................................143 11.6 Fourier's Law-A Continuum Example of Linearity ......................................................... 144 11.7 Statistical Mechanics Picture of Irreversibility ...................................................................145 11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance ............147 11.9 Onsager's Reciprocal Relations ...........................................................................................149 11.10 Applications ........................................................................................................................ 150 11.11 Steady States and the Principle of Minimum Entropy Production .....................................151 11.12 Summary ..............................................................................................................................152 References .......................................................................................................................................152 12. Non-equilibrium Statistical Mechanics ......................................................................................153 12.1 Fick's Laws for Diffusion ....................................................................................................153 12.1.1 First Fick's Law ......................................................................................................153 12.1.2 Calculation of the Flux from Thermodynamic Considerations ............................ 154 12.1.3 The Continuity Equation ........................................................................................155 12.1.4 Second Fick's Law-The Diffusion Equation ...................................................... 156 12.1.5 Diffusion of Particles Through a Membrane ........................................................ 156 12.1.6 Self-Diffusion ........................................................................................................ 156 12.2 Brownian Motion: Einstein's Derivation of the Diffusion Equation .................................. 158 12.3 Langevin Equation .............................................................................................................. 160 12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem .........................162 12.3.2 Correlation Functions.............................................................................................163 12.3.3 The Displacement of a Langevin Particle ............................................................. 164 12.3.4 The Probability Distributions of the Velocity and the Displacement ................... 166 12.3.5 Langevin Equation with a Charge in an Electric Field ..........................................168 12.3.6 Langevin Equation with an External Force-The Strong Damping Velocity .......168 12.4 Stochastic Dynamics Simulations .......................................................................................169 12.4.1 Generating Numbers from a Gaussian Distribution by CLT .................................170 12.4.2 Stochastic Dynamics versus Molecular Dynamics................................................171 12.5 The Fokker-Planck Equation ...............................................................................................171 12.6 Smoluchowski Equation.......................................................................................................174 12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force...........................175 12.8 Summary of Pairs of Equations ...........................................................................................175 References .......................................................................................................................................176 13. The Master Equation ....................................................................................................................177 13.1 Master Equation in a Microcanonical System .....................................................................177 13.2 Master Equation in the Canonical Ensemble.......................................................................178 13.3 An Example from Magnetic Resonance ............................................................................. 180 13.3.1 Relaxation Processes Under Various Conditions ...................................................181 13.3.2 Steady State and the Rate of Entropy Production ................................................. 184 13.4 The Principle of Minimum Entropy Production-Statistical Mechanics Example............185 References .......................................................................................................................................186 Section IV Advanced Simulation Methods: Polymers and Biological Macromolecules 14. Growth Simulation Methods for Polymers .................................................................................189 14.1 Simple Sampling of Ideal Chains ........................................................................................189 14.2 Simple Sampling of SAWs .................................................................................................. 190 14.3 The Enrichment Method ..................................................................................................... 192 14.4 The Rosenbluth and Rosenbluth Method ............................................................................ 193 14.5 The Scanning Method ......................................................................................................... 195 14.5.1 The Complete Scanning Method .......................................................................... 195 14.5.2 The Partial Scanning Method ............................................................................... 196 14.5.3 Treating SAWs with Finite Interactions ................................................................ 197 14.5.4 A Lower Bound for the Entropy ........................................................................... 197 14.5.5 A Mean-Field Parameter ....................................................................................... 198 14.5.6 Eliminating the Bias by Schmidt's Procedure ...................................................... 199 14.5.7 Correlations in the Accepted Sample ................................................................... 200 14.5.8 Criteria for Efficiency ........................................................................................... 201 14.5.9 Locating Transition Temperatures ........................................................................ 202 14.5.10 The Scanning Method versus Other Techniques .................................................. 203 14.5.11 The Stochastic Double Scanning Method ............................................................ 204 14.5.12 Future Scanning by Monte Carlo .......................................................................... 204 14.5.13 The Scanning Method for the Ising Model and Bulk Systems ............................. 205 14.6 The Dimerization Method .................................................................................................. 206 References ...................................................................................................................................... 208 15. The Pivot Algorithm and Hybrid Techniques ............................................................................211 15.1 The Pivot Algorithm-Historical Notes ..............................................................................211 15.2 Ergodicity and Efficiency ....................................................................................................211 15.3 Applicability ........................................................................................................................212 15.4 Hybrid and Grand-Canonical Simulation Methods .............................................................213 15.5 Concluding Remarks ............................................................................................................214 References .......................................................................................................................................214 16. Models of Proteins .........................................................................................................................217 16.1 Biological Macromolecules versus Polymers ......................................................................217 16.2 Definition of a Protein Chain ...............................................................................................217 16.3 The Force Field of a Protein ................................................................................................218 16.4 Implicit Solvation Models ....................................................................................................219 16.5 A Protein in an Explicit Solvent ......................................................................................... 220 16.6 Potential Energy Surface of a Protein ................................................................................ 221 16.7 The Problem of Protein Folding ......................................................................................... 222 16.8 Methods for a Conformational Search ................................................................................ 222 16.8.1 Local Minimization-The Steepest Descents Method ........................................ 223 16.8.2 Monte Carlo Minimization ................................................................................... 224 16.8.3 Simulated Annealing ............................................................................................ 225 16.9 Monte Carlo and Molecular Dynamics Applied to Proteins .............................................. 225 16.10 Microstates and Intermediate Flexibility ........................................................................... 226 16.10.1 On the Practical Definition of a Microstate .......................................................... 227 References ...................................................................................................................................... 227 17. Calculation of the Entropy and the Free Energy by Thermodynamic Integration ................231 17.1 "Calorimetric" Thermodynamic Integration ...................................................................... 232 17.2 The Free Energy Perturbation Formula .............................................................................. 232 17.3 The Thermodynamic Integration Formula of Kirkwood ................................................... 234 17.4 Applications ........................................................................................................................ 235 17.4.1 Absolute Entropy of a SAW Integrated from an Ideal Chain Reference State ..... 235 17.4.2 Harmonic Reference State of a Peptide ................................................................ 237 17.5 Thermodynamic Cycles ...................................................................................................... 237 17.5.1 Other Cycles .......................................................................................................... 240 17.5.2 Problems of TI and FEP Applied to Proteins ....................................................... 240 References ...................................................................................................................................... 241 18. Direct Calculation of the Absolute Entropy and Free Energy ................................................ 243 18.1 Absolute Free Energy from E/kBT]> ...................................................................... 243 18.2 The Harmonic Approximation ........................................................................................... 244 18.3 The M2 Method .................................................................................................................. 245 18.4 The Quasi-Harmonic Approximation ................................................................................. 246 18.5 The Mutual Information Expansion ................................................................................... 247 18.6 The Nearest Neighbor Technique ....................................................................................... 248 18.7 The MIE-NN Method ......................................................................................................... 249 18.8 Hybrid Approaches ............................................................................................................. 249 References ...................................................................................................................................... 249 19. Calculation of the Absolute Entropy from a Single Monte Carlo Sample...............................251 19.1 The Hypothetical Scanning (HS) Method for SAWs ...........................................................251 19.1.1 An Exact HS Method .............................................................................................251 19.1.2 Approximate HS Method ...................................................................................... 252 19.2 The HS Monte Carlo (HSMC) Method .............................................................................. 253 19.3 Upper Bounds and Exact Functionals for the Free Energy ................................................ 255 19.3.1 The Upper Bound FB ............................................................................................ 255 19.3.2 FB Calculated by the Reversed Schmidt Procedure ............................................. 256 19.3.3 A Gaussian Estimation of FB ................................................................................ 257 19.3.4 Exact Expression for the Free Energy .................................................................. 258 19.3.5 The Correlation Between A and FA ..................................................................... 258 19.3.6 Entropy Results for SAWs on a Square Lattice .................................................... 259 19.4 HS and HSMC Applied to the Ising Model ........................................................................ 260 19.5 The HS and HSMC Methods for a Continuum Fluid ..........................................................261 19.5.1 The HS Method ......................................................................................................261 19.5.2 The HSMC Method ............................................................................................... 262 19.5.3 Results for Argon and Water ................................................................................. 264 19.5.3.1 Results for Argon .................................................................................. 264 19.5.3.2 Results for Water .................................................................................. 266 19.6 HSMD Applied to a Peptide ............................................................................................... 266 19.6.1 Applications .......................................................................................................... 269 19.7 The HSMD-TI Method ....................................................................................................... 269 19.8 The LS Method ................................................................................................................... 270 19.8.1 The LS Method Applied to the Ising Model ......................................................... 270 19.8.2 The LS Method Applied to a Peptide ................................................................... 272 References .......................................................................................................................................274 20. The Potential of Mean Force, Umbrella Sampling, and Related Techniques ........................ 277 20.1 Umbrella Sampling ............................................................................................................. 277 20.2 Bennett's Acceptance Ratio ................................................................................................ 278 20.3 The Potential of Mean Force .............................................................................................. 281 20.3.1 Applications .......................................................................................................... 284 20.4 The Self-Consistent Histogram Method ............................................................................. 285 20.4.1 Free Energy from a Single Simulation.................................................................. 286 20.4.2 Multiple Simulations and The Self-Consistent Procedure.................................... 286 20.5 The Weighted Histogram Analysis Method ....................................................................... 289 20.5.1 The Single Histogram Equations .......................................................................... 290 20.5.2 The WHAM Equations ..........................................................................................291 20.5.3 Enhancements of WHAM .................................................................................... 293 20.5.4 The Basic MBAR Equation .................................................................................. 295 20.5.5 ST-WHAM and UIM ............................................................................................ 296 20.5.6 Summary ............................................................................................................... 296 References ...................................................................................................................................... 297 21. Advanced Simulation Methods and Free Energy Techniques ................................................. 301 21.1 Replica-Exchange ............................................................................................................... 301 21.1.1 Temperature-Based REM ..................................................................................... 301 21.1.2 Hamiltonian-Dependent Replica Exchange .......................................................... 305 21.2 The Multicanonical Method ............................................................................................... 308 21.2.1 Applications ...........................................................................................................311 21.2.2 MUCA-Summary ..................................................................................................312 21.3 The Method of Wang and Landau .......................................................................................312 21.3.1 The Wang and Landau Method-Applications ........................................................314 21.4 The Method of Expanded Ensembles ..................................................................................315 21.4.1 The Method of Expanded Ensembles-Applications ..............................................317 21.5 The Adaptive Integration Method .......................................................................................317 21.6 Methods Based on Jarzynski's Identity ...............................................................................319 21.6.1 Jarzynski's Identity versus Other Methods for Calculating F ........................... 323 21.7 Summary ............................................................................................................................. 324 References ...................................................................................................................................... 324 22. Simulation of the Chemical Potential ..........................................................................................331 22.1 The Widom Insertion Method .............................................................................................331 22.2 The Deletion Procedure .......................................................................................................332 22.3 Personage's Method for Treating Deletion ......................................................................... 334 22.4 Introduction of a Hard Sphere ............................................................................................ 336 22.5 The Ideal Gas Gauge Method ............................................................................................. 337 22.6 Calculation of the Chemical Potential of a Polymer by the Scanning Method .................. 338 22.7 The Incremental Chemical Potential Method for Polymers ............................................... 340 22.8 Calculation of by Thermodynamic Integration ................................................................341 References .......................................................................................................................................341 23. The Absolute Free Energy of Binding ........................................................................................ 343 23.1 The Law of Mass Action ..................................................................................................... 343 23.2 Chemical Potential, Fugacity, and Activity of an Ideal Gas............................................... 344 23.2.1 Thermodynamics .................................................................................................. 344 23.2.2 Canonical Ensemble.............................................................................................. 344 23.2.3 NpT Ensemble ....................................................................................................... 345 23.3 Chemical Potential in Ideal Solutions: Raoult's and Henry's Laws ................................... 345 23.3.1 Raoult's Law ......................................................................................................... 346 23.3.2 Henry's Law .......................................................................................................... 346 23.4 Chemical Potential in Non-ideal Solutions ......................................................................... 346 23.4.1 Solvent ................................................................................................................... 346 23.4.2 Solute ..................................................................................................................... 347 23.5 Thermodynamic Treatment of Chemical Equilibrium ....................................................... 347 23.6 Chemical Equilibrium in Ideal Gas Mixtures: Statistical Mechanics ................................ 348 23.7 Pressure-Dependent Equilibrium Constant of Ideal Gas Mixtures .................................... 349 23.8 Protein-Ligand Binding ...................................................................................................... 350 23.8.1 Standard Methods for Calculating A0 .................................................................352 23.8.2 Calculating A0 by HSMD-TI .............................................................................. 354 23.8.3 HSMD-TI Applied to the FKBP12-FK506 Complex: Equilibration ................... 356 23.8.4 The Internal and External Entropies..................................................................... 357 23.8.5 TI Results for FKBP12-FK506 ............................................................................. 360 23.8.6 A0 Results for FKBP12-FK506 .......................................................................... 360 23.9 Summary ............................................................................................................................. 362 References ...................................................................................................................................... 362 Appendix ............................................................................................................................................... 367 Index ...................................................................................................................................................... 369

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ