Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, proceedings
著者
書誌事項
Medical image computing and computer assisted intervention -- MICCAI 2019 : 22nd International Conference, Shenzhen, China, October 13-17, 2019, proceedings
(Lecture notes in computer science, 11767 . LNCS sublibrary ; SL 6 . Image processing,
Springer, c2019
- pt. 4
- タイトル別名
-
MICCAI 2019
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Other editors: Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan
Includes bibliographical references and author index
内容説明・目次
内容説明
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019.
The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections:
Part I: optical imaging; endoscopy; microscopy.
Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression.
Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging.
Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis.
Part V: computer assisted interventions; MIC meets CAI.
Part VI: computed tomography; X-ray imaging.
目次
Shape.- A CNN-Based Framework for Statistical Assessment of Spinal Shape and Curvature in Whole-Body MRI Images of Large Populations.- Exploiting Reliability-guided Aggregation for the Assessment of Curvilinear Structure Tortuosity.- A Surface-theoretic Approach for Statistical Shape Modeling.- Shape Instantiation from A Single 2D Image to 3D Point Cloud with One-stage Learning.- Placental Flattening via Volumetric Parameterization with Dirichlet Energy Regularization.- Fast Polynomial Approximation to Heat Diffusion in Manifolds.- Hierarchical Multi-Geodesic Model for Longitudinal Analysis of Temporal Trajectories of Anatomical Shape and Covariates.- Clustering of longitudinal shape data sets using mixture of separate or branching trajectories.- Group-wise Graph Matching of Cortical Gyral Hinges.- Multi-view Graph Matching of Cortical Landmarks.- Patient-specific Conditional Joint Models of Shape, Image Features and Clinical Indicators.- Surface-Based Spatial Pyramid Matching of Cortical Regions for Analysis of Cognitive Performance.- Prediction.- Diagnosis-guided multi-modal feature selection for prognosis prediction of lung squamous cell carcinoma.- Graph convolution based attention model for personalized disease prediction.- Predicting Early Stages of Neurodegenerative Diseases via Multi-task Low-rank Feature Learning.- Improved Prediction of Cognitive Outcomes via Globally Aligned Imaging Biomarker Enrichments Over Progressions.- Deep Granular Feature-Label Distribution Learning for Neuroimaging-based Infant Age Prediction.- End-to-End Dementia Status Prediction from Brain MRI using Multi-Task Weakly-Supervised Attention Network.- Unified Modeling of Imputation, Forecasting, and Prediction for AD Progression.- LSTM Network for Prediction of Hemorrhagic Transformation in Acute Stroke.- Inter-modality Dependence Induced Data Recovery for MCI Conversion Prediction.- Preprocessing, Prediction and Significance: Framework and Application to Brain Imaging.- Early Prediction of Alzheimer's Disease progression using Variational Autoencoder.- Integrating Heterogeneous Brain Networks for Predicting Brain Disease Conditions.- Detection and Localization.- Uncertainty-informed detection of epileptogenic brain malformations using Bayesian neural networks.- Automated Lesion Detection by Regressing Intensity-Based Distance with a Neural Network.- Intracranial aneurysms detection in 3D cerebrovascular mesh model with ensemble deep learning.- Automated Noninvasive Seizure Detection and Localization Using Switching Markov Models and Convolutional Neural Networks.- Multiple Landmarks Detection using Multi-Agent Reinforcement Learning.- Spatiotemporal Breast Mass Detection Network (MD-Net) in 4D DCE-MRI Images.- Automated Pulmonary Embolism Detection from CTPA Images using an End-to-End Convolutional Neural Network.- Pixel-wise anomaly ratings using Variational Auto-Encoders.- HR-CAM: Precise Localization of pathology using multi-level learning in CNNs.- Novel Iterative Attention Focusing Strategy for Joint Pathology Localization and Diagnosis of MCI Progression.- Automatic Vertebrae Recognition from Arbitrary Spine MRI images by a Hierarchical Self-calibration Detection Framework.- Machine Learning.- Image data validation for medical systems.- Captioning Ultrasound Images Automatically.- Feature Transformers: Privacy Preserving Life Learning Framework for Healthcare Applications.- As easy as 1, 2... 4? Uncertainty in counting tasks for medical imaging.- Generalizable Feature Learning in the Presence of Data Bias and Domain Class Imbalance with Application to Skin Lesion Classification.- Learning task-specific and shared representations in medical imaging.- Models Genesis: Generic Autodidactic Models for 3D Medical Image Analysis.- Efficient Ultrasound Image Analysis Models with Sonographer Gaze Assisted Distillation.- Fetal Pose Estimation in Volumetric MRI using 3D Convolution Neural Network.- Multi-Stage Prediction Networks for Data Harmonization.- Self-supervised Feature Learning for 3D Medical Images by Playing a Rubik's Cube.- Bayesian Volumetric Autoregressive generative models for better semisupervised learning with scarce Medical imaging data.- Data Augmentation for Regression Neural Networks.- A Dirty Multi-task Learning Method for Multi-modal Brain Imaging Genetics.- Robust and Discriminative Brain Genome Association Analysis.- Symmetric Dual Adversarial Connectomic Domain Alignment for Predicting Isomorphic Brain Graph From a Baseline Graph.- Harmonization of Infant Cortical Thickness using Surface-to-Surface Cycle-Consistent Adversarial Networks.- Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference.- Computer-aided Diagnosis.- Multi Scale Curriculum CNN for Context-Aware Breast MRI Malignancy Classification.- Deep Angular Embedding and Feature Correlation Attention for Breast MRI Cancer Analysis.- Fully Deep Learning for Slit-lamp Photo based Nuclear Cataract Grading.- Overcoming Data Limitation in Medical Visual Question Answering.- Multi-Instance Multi-Scale CNN for Medical Image Classification.- Improving Uncertainty Estimation in Convolutional Neural Networks Using Inter-rater Agreement.- Improving Skin Condition Classification with a Visual Symptom Checker Trained using Reinforcement Learning.- DScGANS: Integrate Domain Knowledge in Training Dual-Path Semi-Supervised Conditional Generative Adversarial Networks and S3VM for Ultrasonography Thyroid Nodules Classification.- Similarity steered generative adversarial network and adaptive transfer learning for malignancy characterization of hepatocellualr carcinoma.- Unsupervised Clustering of Quantitative Imaging Subtypes using Autoencoder and Gaussian Mixture Model.- Adaptive Sparsity Regularization Based Collaborative Clustering for Cancer Prognosis.- Coronary Artery Plaque Characterization from CCTA Scans using Deep Learning and Radiomics.- Response Estimation through Spatially Oriented Neural Network and Texture Ensemble (RESONATE).- STructural Rectal Atlas Deformation (StRAD) features for characterizing intra- and peri-wall chemoradiation response on MRI.- Dynamic Routing Capsule Networks for Mild Cognitive Impairment Diagnosis.- Deep Multi-modal Latent Representation Learning for Automated Dementia Diagnosis.- Dynamic Spectral Convolution Networks with Assistant Task Training for Early MCI diagnosis.- Bridging Imaging, Genetics, and Diagnosis in a Coupled Low-Dimensional Framework.- Global and Local Interpretability for Cardiac MRI Classification.- Let's agree to disagree: learning highly debatable multirater labelling.- Coidentifciation of group-level hole structures in brain networks via Hodge Laplacian.- Confident Head Circumference Measurement from Ultrasound with Real-time Feedback for Sonographers.- Image Reconstruction and Synthesis.- Detection and Correction of Cardiac MRI Motion Artefacts during Reconstruction from k-space.- Exploiting motion for deep learning reconstruction of extremely-undersampled dynamic MRI.- VS-Net: Variable spitting network for accelerated parallel MRI reconstruction.- A Novel Loss Function Incorporating Imaging Acquisition Physics for PET Attenuation Map Generation using Deep Learning.- A Prior Learning Network for Joint Image and Sensitivity Estimation in Parallel MR Imaging.- Consensus Neural Network for Medical Image Denoising with Only Noisy Training Samples.- Consistent Brain Ageing Synthesis.- Hybrid Generative Adversarial Networks for Deep MR to CT Synthesis using Unpaired Data.- Arterial Spin Labeling Images Synthesis via Locally-constrained WGAN-GP Ensemble.- SkrGAN: Sketching-rendering Unconditional Generative Adversarial Networks for Medical Image Synthesis.- Wavelet-Based Semi-Supervised Adversarial Learning for Synthesizing Realistic 7T from 3T MRI.- DiamondGAN: Unified Multi-Modal Generative Adversarial Networks for MRI Sequences Synthesis.
「Nielsen BookData」 より