Differential inclusions in a banach space
著者
書誌事項
Differential inclusions in a banach space
(Mathematics and its applications, v. 524)
Springer Science+Business Media, 2000
- [: pbk.]
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"Originally published by Kluwer Academic Publichers in 2000, Softcover reprint of the hardcover 1st edition 2000"--T.p. verso
Includes bibliographical references (p. 279-297) and indexes
内容説明・目次
内容説明
Preface to the English Edition The present monograph is a revised and enlarged alternative of the author's monograph [19] which was devoted to the development of a unified approach to studying differential inclusions, whose values of the right hand sides are compact, not necessarily convex subsets of a Banach space. This approach relies on ideas and methods of modem functional analysis, general topology, the theory of multi-valued mappings and continuous selectors. Although the basic content of the previous monograph has been remained the same this monograph has been partly re-organized and the author's recent results have been added. The contents of the present book are divided into five Chapters and an Appendix. The first Chapter of the J>ook has been left without changes and deals with multi-valued differential equations generated by a differential inclusion. The second Chapter has been significantly revised and extended. Here the au thor's recent results concerning extreme continuous selectors of multi-functions with decomposable values, multi-valued selectors ofmulti-functions generated by a differential inclusion, the existence of solutions of a differential inclusion, whose right hand side has different properties of semicontinuity at different points, have been included. Some of these results made it possible to simplify schemes for proofs concerning the existence of solutions of differential inclu sions with semicontinuous right hand side a.nd to obtain new results. In this Chapter the existence of solutions of different types are considered.
目次
Preface. 1. Multi-Valued Differential Equation Generated by a Differential Inclusion. 2. Differential Inclusions. Existence of Solutions. 3. Properties of Solutions. 4. Integral Funnel of the Differential Inclusion. 5. Inclusions with Non-Compact Right Hand Side. Appendices. References. Index. Symbols.
「Nielsen BookData」 より