Introduction to applied nonlinear dynamical systems and chaos
著者
書誌事項
Introduction to applied nonlinear dynamical systems and chaos
(Texts in applied mathematics, 2)
Springer, c2003
2nd ed
- : v. 2
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Originally published by Springer-Verlag New York, Inc. in 2003"--T.p. verso
"Softcover reprint of the hardcover 2nd edition 2003"--T.p. verso
Includes bibliographical references and index
内容説明・目次
内容説明
This introduction to applied nonlinear dynamics and chaos places emphasis on teaching the techniques and ideas that will enable students to take specific dynamical systems and obtain some quantitative information about their behavior. The new edition has been updated and extended throughout, and contains a detailed glossary of terms.
From the reviews:
"Will serve as one of the most eminent introductions to the geometric theory of dynamical systems." --Monatshefte fur Mathematik
目次
Equilibrium Solutions, Stability, and Linearized Stability * Liapunov Functions * Invariant Manifolds: Linear and Nonlinear Systems * Periodic Orbits * Vector Fields Possessing an Integral * Index Theory * Some General Properties of Vector Fields: Existence, Uniqueness, Differentiability, and Flows * Asymptotic Behavior * The Poincare-Bendixson Theorem * Poincare Maps * Conjugacies of Maps, and Varying the Cross-Section * Structural Stability, Genericity, and Transversality * Lagrange's Equations * Hamiltonian Vector Fields * Gradient Vector Fields * Reversible Dynamical Systems * Asymptotically Autonomous Vector Fields * Center Manifolds * Normal Forms * Bifurcation of Fixed Points of Vector Fields * Bifurcations of Fixed Points of Maps * On the Interpretation and Application of Bifurcation Diagrams: A Word of Caution * The Smale Horseshoe * Symbolic Dynamics * The Conley-Moser Conditions or 'How to Prove That a Dynamical System is Chaotic' * Dynamics Near Homoclinic Points of Two-Dimensional Maps * Orbits Homoclinic to Hyperbolic Fixed Points in Three-Dimensional Autonomous Vector Fields * Melnikov's Method for Homoclinic Orbits in Two-Dimensional, Time-Periodic Vector Fields * Liapunov Exponents * Chaos and Strange Attractors * Hyperbolic Invariant Sets: A Chaotic Saddle * Long Period Sinks in Dissipative Systems and Elliptic Islands in Conservative Systems * Global Bifurcations Arising from Local Codimension-Two Bifurcations * Glossary of Frequently Used Terms
「Nielsen BookData」 より