Hybrid atomic-scale interface design for materials functionality
著者
書誌事項
Hybrid atomic-scale interface design for materials functionality
Elsevier, 2021
- pbk.
大学図書館所蔵 件 / 全2件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
内容説明・目次
内容説明
Hybrid Atomic-Scale Interface Design for Materials Functionality covers a broad range of atomistic, meso and macro scale computational methodologies, including multiphase (hybrid) materials constructs for tailoring structural, thermal and electrical properties. As future materials are expected to perform with increasing efficiency in complex and dynamic environments hybrid materials design, in contrast to monolithic concepts, they are a cost-effective alternative. Taking materials hybridization at smaller scale, even at atomic scale, offers exceedingly high-payoff opportunities for optimizing materials functionality at reduced material consumption and even reduced qualification costs (eliminates many costly component and system level qualification tests).
目次
1. Introduction to hybrid materials design issues and challenges for micro devices 2. Molecular Dynamics (MD) methodologies for predicting thermal transport in aerospace (cross-linked) polymers 3. Electron transport through nanomaterials interfaces 4. Wave Packets MD 5. Molecular Mechanics (MM) for materials interface strength 6. Kapitza resistance in lattice structures 7. Porous hybrid nano materials: processing, characterization and materials properties 8. Nano-porous graphitic carbon for super capacitors 9. Nano-porous carbon for hydrogen storage 10. Laser induced nano materials processing 11. Nano materials interface strength measurements 12. Combined thermal-mechanical micro measurement
「Nielsen BookData」 より