Crystallization of lipids : fundamentals and applications in food, cosmetics, and pharmaceuticals
著者
書誌事項
Crystallization of lipids : fundamentals and applications in food, cosmetics, and pharmaceuticals
Wiley Blackwell, 2018
- : cloth
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
An authoritative reference that contains the most up-to-date information knowledge, approaches, and applications of lipid crystals
Crystallization of Lipids is a comprehensive resource that offers the most current and emerging knowledge, techniques and applications of lipid crystals. With contributions from noted experts in the field, the text covers the basic research of polymorphic structures, molecular interactions, nucleation and crystal growth and crystal network formation of lipid crystals which comprise main functional materials employed in food, cosmetic and pharmaceutical industry. The authors highlight trans-fat alternative and saturated-fat reduction technology to lipid crystallization. These two issues are the most significant challenges in the edible-application technology of lipids, and a key solution is lipid crystallization.
The text focuses on the crystallization processes of lipids under various external influences of thermal fluctuation, ultrasound irradiation, shear, emulsification and additives. Designed to be practical, the book's information can be applied to realistic applications of lipids to foods, cosmetic and pharmaceuticals. This authoritative and up-to-date guide:
Highlights cutting-edge research tools designed to help analyse lipid crystallization with the most current and the conventional techniques
Offers a thorough review of the information, techniques and applications of lipid crystals
Includes contributions from noted experts in the field of lipid crystals
Presents cutting-edge information on the topics of trans-fat alterative and saturated-fat reduction technology
Written for research and development technologists as well as academics, this important resource contains research on lipid crystals which comprise the main functional materials employed in food, cosmetic and pharmaceutical industry.
目次
Preface xiii
List of Contributors xv
1 Introduction: Relationships of Structures, Properties, and Functionality 1
Kiyotaka Sato
1.1 Introduction 1
1.2 Lipid Species 1
1.2.1 Hydrocarbons 1
1.2.2 Fatty Acids 2
1.2.3 Alcohols and Waxes 4
1.2.4 Acylglycerols 4
1.3 Physical States and the Functionality of Lipid Products 5
1.4 Formation Processes of Lipid Crystals 7
1.5 Polymorphism 9
1.6 Aging and Deterioration 11
1.7 Trans-Fat Alternative and Saturated-Fat Reduction Technology 13
References 15
2 Polymorphism of Lipid Crystals 17
Kiyotaka Sato
2.1 Introduction 17
2.2 Thermal Behavior of Polymorphic Transformations 17
2.3 Molecular Properties 20
2.3.1 Subcell and Chain-Length Structures 20
2.3.2 Conformation of Hydrocarbon Chains 24
2.3.3 Glycerol Conformations 25
2.3.4 Polytypism 26
2.4 Fatty Acids 27
2.4.1 Saturated Fatty Acids 27
2.4.2 Unsaturated Fatty Acids 32
2.5 Monoacylglycerols and Diacylglycerols 37
2.5.1 Crystal/Molecular Structures 37
2.5.2 Polymorphic Behavior 39
2.6 Triacylglycerols (TAGs) 41
2.6.1 Crystal/Molecular Structures 42
2.6.2 Polymorphic Behavior 46
2.7 Conclusions 54
References 54
3 Molecular Interactions and Mixing Phase Behavior of Lipid Crystals 61
Eckhard Floeter, Michaela Haeupler, and Kiyotaka Sato
3.1 Introduction 61
3.2 Thermodynamic Considerations 63
3.2.1 Framework for Engineering Calculations 63
3.2.2 Phase Behavior of Co-Crystallizing Components 66
3.2.3 Governing Principles for Phase Boundaries 70
3.3 Effects of Molecular Structures on the Phase Behavior 70
3.3.1 Aliphatic Chain-Chain Interactions: n-Alkanes 71
3.3.2 Mixtures of Fatty Acids 72
3.3.3 Mixtures of Partial Glyceride Fatty-Acid Esters 81
3.3.4 Mixtures of TAGs 82
3.4 Mixing Behavior of TAGs in Natural and Interesterified Fats 92
3.4.1 Cocoa Butter 93
3.4.2 Palm Oil 94
3.4.3 Coconut Oil 95
3.4.4 Milk Fat 95
3.4.5 Interesterified Fats 96
3.5 Crystallization Properties 97
3.6 Conclusions 98
References 100
4 Fundamental Aspects of Crystallization of Lipids 105
Hironori Hondoh, Satoru Ueno, and Kiyotaka Sato
4.1 Introduction 105
4.2 Physical and Structural Properties of Lipid Liquids 105
4.2.1 Preheating Effects 106
4.2.2 Liquid Phases of Triacylglycerols 109
4.3 Driving Forces for Crystallization 112
4.4 Nucleation 114
4.4.1 Homogeneous versus Heterogeneous 114
4.4.2 Polymorph-Dependent Nucleation Kinetics 118
4.4.3 Secondary Nucleation 121
4.4.4 Crystal Seeding 122
4.5 Kinetics of Crystal Growth 125
4.5.1 Mechanism of Crystal Growth 125
4.5.2 Crystal Growth Rate 127
4.5.3 Polymorph-Dependent Growth Rate 129
4.5.4 Spherulite 130
4.5.5 Epitaxial Growth 132
4.5.6 Morphology of Crystals 133
4.6 Conclusions 135
Acknowledgment 136
References 136
5 Supramolecular Assembly of Fat Crystal Networks from the Nanoscale to the Mesoscale 143
Fernanda Peyronel, Nuria C. Acevedo, David A. Pink, and Alejandro G. Marangoni
5.1 Introduction 143
5.2 Cryo-TEM 144
5.2.1 Challenges Associated with the Microscopic Observation of Fat Microstructure 144
5.2.2 Sample Preparation for Cryo-TEM 145
5.2.3 Nanoscale Structure Characterization 146
5.2.4 Effects of External Fields on Fat Nanostructure 148
5.3 Physical Interactions, Models, and Mathematical Methods 154
5.3.1 Models in General 155
5.3.2 Coarse-Grained Interactions: Nano- to Mesoscale 156
5.3.3 Models Using Spheres 157
5.3.4 Introduction to Modeling the Statics and Dynamics of Aggregates 157
5.3.5 Static Structure Functions 158
5.3.6 Application 1: CNP Aggregation. Tristearin Solids in Triolein Oil 158
5.3.7 Application 2: Complex Oils. Tristearin Solids in Complex Oils 161
5.3.8 Application 3: Nanoscale Phase Separation in Edible Oils 162
5.4 Ultra Small Angle X-Ray Scattering (USAXS) 164
5.4.1 Principles of X-Ray Scattering 164
5.4.2 USAXS Instrumentation at the APS 167
5.4.3 Sample Preparation 168
5.4.4 Unified Fit and Guinier-Porod Models 168
5.4.5 Experimental Results 170
5.5 Concluding Remarks 174
Acknowledgments 175
References 175
6 Effects of Dynamic Temperature Variations on Microstructure and Polymorphic Behavior of Lipid Systems 183
Laura Bayes-Garcia, Teresa Calvet, and Miquel A. Cuevas-Diarte
6.1 Introduction 183
6.2 Influence on the Polymorphic Behavior in Bulk State 183
6.2.1 Single Tag Components 183
6.2.2 Binary Mixtures of TAGs 189
6.3 Colloidal Dispersion States 193
6.3.1 Emulsions 193
6.3.2 Organogels 196
6.4 Role of Thermal Treatments on End Food Products Properties 198
6.4.1 Milk Fats 198
6.4.2 Other Dairy Products 199
6.4.3 Cocoa Butter 200
6.4.4 Vegetable Fats 204
6.5 Conclusions 206
References 207
7 Lipid Crystal Networks Structured under Shear Flow 211
Farnaz Maleky and Gianfranco Mazzanti
7.1 Introduction 211
7.2 Overview of the Formation of Fat Crystals 212
7.3 Temperature Gradients and Optimal Supercooling 213
7.4 Basic Concepts on Shear Flow 214
7.5 Fat Crystallization under Shear 216
7.5.1 Shear Affects Polymorphic Transformations 216
7.5.2 Crystalline Orientation Induced by Shear Flow 219
7.5.3 Shear Affects Fat Structural Properties at the Micro- and Nano-Length Scales 224
7.5.4 Physicochemical Properties of Sheared Fat Matrices 227
7.5.5 Effects of Shear Flow on Mass Transfer Dynamics of Crystallizing and Crystallized Materials 231
7.6 Concluding Remarks 233
References 234
8 Tailoring Lipid Crystal Networks with High-Intensity Ultrasound 241
Yubin Ye, Peter R. Birkin, and Silvana Martini
8.1 Introduction 241
8.2 Fundamentals of Sonication 242
8.2.1 Acoustic Driving Force 242
8.2.2 Acoustic Cell Characteristics 243
8.2.3 Cavitation 244
8.2.4 Experimental Conditions 245
8.3 Tailoring Lipid Crystal Networks 246
8.3.1 Crystallization Kinetics 246
8.3.2 Inferential Mechanism 249
8.3.3 Postsonication Changes 250
8.4 Practical Considerations 255
8.4.1 Oxidation 255
8.4.2 Scale Up 257
8.4.3 Combination with Other Processing Methods 258
8.5 Conclusions and Future Research 258
References 259
9 Effects of Foreign and Indigenous Minor Components 263
Kevin W. Smith and Kiyotaka Sato
9.1 Introduction 263
9.2 Basic Understanding 264
9.3 Effects of Foreign Components 265
9.3.1 Emulsifiers 265
9.3.2 Indigenous Minor Components 276
9.4 Other Additives 276
9.5 Conclusions 278
References 279
10 Crystallization Properties of Milk Fats 283
Christelle Lopez
10.1 Introduction 283
10.2 Milk Fat: A Wide Diversity of Fatty Acids and Triacylglycerols (TAGs) 284
10.3 Crystallization Properties of Bovine Anhydrous Milk Fat (AMF) 285
10.3.1 Thermal Properties 285
10.3.2 Effect of Cooling Rate on AMF Crystals 286
10.3.3 Effect of Shear on AMF Crystals 295
10.3.4 Effect of Minor Lipid Compounds 295
10.4 Crystallization of TAGs in Bovine Milk Fat Globules and Emulsion Droplets 296
10.4.1 Effect of Cooling Rate and Tempering 298
10.4.2 Effect of the Size of Milk Fat Globules and Lipid Droplets 304
10.5 Crystallization Properties of Milk Fat in Dairy Products 306
10.6 Tag Compositions Affecting Crystallization Properties of Milk Fat 308
10.6.1 Technological Process: Dry Fractionation 308
10.6.2 Dietary Manipulations 312
10.6.3 Milk Fat from Various Mammal Species 315
10.7 Liquid Tag Phase 316
10.8 Conclusions 317
References 318
11 Crystallization Behavior of Sunflower Oil-Based Fats for Edible Applications 323
Maria L. Herrera and Silvana Martini
11.1 Introduction 323
11.2 High Stearic High Oleic Sunflower Oil 324
11.2.1 Fractionation of HSHO-SFO 324
11.2.2 Crystallization Behavior 326
11.2.3 Polymorphic Behavior 329
11.3 Blends of Sunflower Oil and Milk Fat 337
11.3.1 Chemical Composition 340
11.3.2 Physical Properties 340
11.3.3 Addition of Palmitic Sucrose Ester 344
11.4 HSHO-Based CBE 347
11.5 Conclusions 348
References 348
12 Physical Properties of Organogels Developed with Selected Low-Molecular-Weight Gelators 353
Jorge F. Toro-Vazquez, Flor Alvarez-Mitre, and Miriam Charo-Alonso
12.1 Introduction 353
12.2 Basic Aspects of LMOGs: From Molecular Architecture to Functional Assemblies 355
12.3 Why Developing Organogels with Vegetable Oils? 356
12.3.1 Vegetable Oils as Solvent in the Development of Organogels with LMOGs 357
12.3.2 Relationship between Molecular Structure of LMOGs and Physical Properties of Organogels 367
12.4 Organogels of Candelilla Wax 373
12.4.1 Rheological Properties of Candelilla Wax Organogels Developed Applying Shear Rate 373
12.4.2 Applications of Candelilla Wax Organogels 377
12.5 Conclusions 377
References 379
13 Formation and Properties of Biopolymer-Based Oleogels 385
Ashok R. Patel
13.1 Introduction 385
13.2 Formation of Polymer-Based Oleogels 386
13.2.1 Polymer Oleogelation through Direct Methods 387
13.2.2 Polymer Oleogelation through Indirect Methods 389
13.3 Properties of Polymer-Based Oleogels 393
13.3.1 Mechanical Properties 393
13.3.2 Temperature Sensitivity 394
13.3.3 Stability in Presence of Water 397
13.4 Potential Applications of Polymer-Based Oleogels 397
13.4.1 Replacement of Beef Fat in Frankfurters 397
13.4.2 Heat-Resistant Chocolates 397
13.4.3 Polymer Oleogels as Alternative to Full-Fat Shortenings 397
13.4.4 Bakery Applications of Ethyl Cellulose Oleogels 398
13.5 Conclusions: Opportunities and Challenges 398
Acknowledgments 401
References 402
14 Lipid Crystallization in Water-in-Oil Emulsions 405
Nicole L. Green and Derick Rousseau
14.1 Introduction 405
14.2 Basics of Emulsion Properties 406
14.3 Emulsifier Effects on W/O Emulsions 408
14.3.1 Mono- and Diacylglycerols (E471) 409
14.3.2 Sucrose Fatty-Acid Esters (E473) 411
14.3.3 Lecithins (E322) 412
14.3.4 Sorbitan Esters and Polyesters (E491-E496) 413
14.3.5 Polyglycerol Esters (E475 - E476) 415
14.4 Stabilization Modes of W/O Emulsions 415
14.4.1 Pickering Stabilization 416
14.4.2 Network Stabilization 420
14.4.3 Combined Pickering and Network Stabilization 421
14.5 Conclusions 423
References 424
15 Crystallization of Lipids in Oil-in-Water Emulsion States 431
John N. Coupland
15.1 The Basic Concepts 431
15.2 Surface Nucleation 432
15.3 Polymorphic Transitions in Droplets 436
15.4 Morphology of Crystalline Droplets 437
15.5 Colloidal Stability of Crystalline Droplets 439
15.6 Conclusions 442
References 443
16 Lipid Crystals and Microstructures in Animal Meat Tissues 447
Michiyo Motoyama, Genya Watanabe, and Keisuke Sasaki
16.1 Introduction 447
16.2 Depot Fat and Crystalline State 448
16.2.1 Adipose Tissue 448
16.2.2 Triacylglycerol (TAG) Compositions of Animal Fats 449
16.3 Fat Crystals and Quality of Porcine Adipose Tissue 450
16.3.1 Polymorphism of Extracted Porcine Fat Crystals 450
16.3.2 Fat Crystals and Macroscopic Meat Quality 454
16.3.3 Application to Actual Meat and Meat Products 455
16.4 Crystal Microstructures in Adipose Tissues 460
16.5 Concluding Remarks 462
Acknowledgments 462
References 462
17 Conventional and New Techniques to Monitor Lipid Crystallization 465
Annelien Rigolle, Koen Van Den Abeele, and Imogen Foubert
17.1 Introduction: What Would Be a Perfect Technique? 465
17.2 Conventional Techniques (and Advances Made) 466
17.2.1 Pulsed Nuclear Magnetic Resonance 466
17.2.2 Differential Scanning Calorimetry 469
17.2.3 X-Ray Diffraction 472
17.2.4 Rheology 474
17.2.5 Microscopy 476
17.3 "New" Techniques with Potential for Online Monitoring 478
17.3.1 Ultrasonic Techniques 478
17.3.2 Laser Backscattering 484
17.3.3 Near-Infrared and Raman Spectroscopy 485
17.4 Conclusions 485
Acknowledgments 486
References 487
Index 493
「Nielsen BookData」 より