Beginning Mathematica and Wolfram for data science : applications in data analysis, machine learning, and neural networks
著者
書誌事項
Beginning Mathematica and Wolfram for data science : applications in data analysis, machine learning, and neural networks
Apress Media, c2021
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes index
内容説明・目次
内容説明
Enhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages.
You'll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages.
You'll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you'll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You'll learn to use its notebooks as a standard format, which also serves to create detailed reports of the processes carried out.
What You Will Learn
Use Mathematica to explore data and describe the concepts using Wolfram language commands
Create datasets, work with data frames, and create tables
Import, export, analyze, and visualize data
Work with the Wolfram data repository
Build reports on the analysis
Use Mathematica for machine learning, with different algorithms, including linear, multiple, and logistic regression; decision trees; and data clustering
Who This Book Is For
Data scientists new to using Wolfram and Mathematica as a language/tool to program in. Programmers should have some prior programming experience, but can be new to the Wolfram language.
目次
1. Introductiona. What is Data science?b. Data science and Statisticsc. Data scientist
2. Introduction to Mathematicaa. Why Mathematica?b. Wolfram Languagec. Structure of Mathematicad. Notebooks e. How Mathematica worksf. Input Form
3. Data Manipulation a. Listsb. Lists of objectsc. Manipulating listsd. Operations with listse. Indexed Tablesf. Working with data framesg. Datasets
4. Data Analysisa. Data Import and exportb. Wolfram data repositoryc. Statistical Analysisd. Visualizing datae. Making reports
5. Machine learning with Wolfram Languagea. Linear Regressionb. Multiple Regressionc. Logistic Regressiond. Decision Tresse. Data Clustering
6. Neural networks with Wolfram Languagea. Network Data and structureb. Network Layersc. Perceptron Modeld. Multi-layer Neural Networke. Using preconstructed nets from Wolfram Neural net repositoryf. LeNet Neural net for text recognition
「Nielsen BookData」 より