Investing in science : social cost-benefit analysis of research infrastructures
著者
書誌事項
Investing in science : social cost-benefit analysis of research infrastructures
The MIT Press, c2019
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 323-354) and index
内容説明・目次
内容説明
A proposal for using cost-benefit analysis to evaluate the socioeconomic impact of public investment in large scientific projects.
Large particle accelerators, outer space probes, genomics platforms: all are scientific enterprises managed through the new form of the research infrastructure, in which communities of scientists collaborate across nations, universities, research institutions, and disciplines. Such large projects are often publicly funded, with no accepted way to measure the benefits to society of these investments. In this book, Massimo Florio suggests the use of cost-benefit analysis (CBA) to evaluate the socioeconomic impact of public investment in large and costly scientific projects.
The core concept of CBA of any infrastructure is to undertake the consistent intertemporal accounting of social welfare effects using the available information. Florio develops a simple framework for such accounting in the research infrastructure context and then offers a systematic analysis of the benefits in terms of the social agents involved. He measures the benefits to scientists, students, and postdoctoral researchers; the effect on firms of knowledge spillovers; the benefits to users of information technology and science-based innovation; the welfare effects on the general public of cultural services provided by RIs; and the willingness of taxpayers to fund scientific knowledge creation. Finally, Florio shows how these costs and benefits can be expressed in the form of stochastic net present value and other summary indicators.
「Nielsen BookData」 より