Knot theory
著者
書誌事項
Knot theory
CRC Press, 2020, c2018
2nd ed
- : pbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"A Chapman & Hall book"--Cover
Includes bibliographical references (p. 529-553) and index
内容説明・目次
内容説明
Over the last fifteen years, the face of knot theory has changed due to various new theories and invariants coming from physics, topology, combinatorics and alge-bra. It suffices to mention the great progress in knot homology theory (Khovanov homology and Ozsvath-Szabo Heegaard-Floer homology), the A-polynomial which give rise to strong invariants of knots and 3-manifolds, in particular, many new unknot detectors. New to this Edition is a discussion of Heegaard-Floer homology theory and A-polynomial of classical links, as well as updates throughout the text.
Knot Theory, Second Edition is notable not only for its expert presentation of knot theory's state of the art but also for its accessibility. It is valuable as a profes-sional reference and will serve equally well as a text for a course on knot theory.
目次
- Knots, links, and invariant polynomials. Introduction. Reidemeister moves. Knot arithmetics. Links in 2-surfaces in R3.Fundamental group
- the knot group. The knot quandle and the Conway algebra. Kauffman's approach to Jones polynomial. Properties of Jones polynomials. Khovanov's complex. Theory of braids. Braids, links and representations of braid groups. Braids and links. Braid construction algorithms. Algorithms of braid recognition. Markov's theorem
- the Yang-Baxter equation. Vassiliev's invariants. Definition and Basic notions of Vassiliev invariant theory. The chord diagram algebra. The Kontsevich integral and formulae for the Vassiliev invariants. Atoms and d-diagrams. Atoms, height atoms and knots. The bracket semigroup of knots. Virtual knots. Basic definitions and motivation. Invariant polynomials of virtual links. Generalised Jones-Kauffman polynomial. Long virtual knots and their invariants. Virtual braids. Other theories. 3-manifolds and knots in 3-manifolds. Legendrian knots and their invariants. Independence of Reidemeister moves.
「Nielsen BookData」 より