Condition monitoring with vibration signals : compressive sampling and learning algorithms for rotating machines

著者

    • Ahmed, Hosameldin
    • Nandi, Asoke Kumar

書誌事項

Condition monitoring with vibration signals : compressive sampling and learning algorithms for rotating machines

Hosameldin Ahmed and Asoke K. Nandi, Brunel University London

John Wiley & Sons, Inc., 2020

  • hbk.

この図書・雑誌をさがす

注記

Includes bibliographical references and index

内容説明・目次

内容説明

Provides an extensive, up-to-date treatment of techniques used for machine condition monitoring Clear and concise throughout, this accessible book is the first to be wholly devoted to the field of condition monitoring for rotating machines using vibration signals. It covers various feature extraction, feature selection, and classification methods as well as their applications to machine vibration datasets. It also presents new methods including machine learning and compressive sampling, which help to improve safety, reliability, and performance. Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines starts by introducing readers to Vibration Analysis Techniques and Machine Condition Monitoring (MCM). It then offers readers sections covering: Rotating Machine Condition Monitoring using Learning Algorithms; Classification Algorithms; and New Fault Diagnosis Frameworks designed for MCM. Readers will learn signal processing in the time-frequency domain, methods for linear subspace learning, and the basic principles of the learning method Artificial Neural Network (ANN). They will also discover recent trends of deep learning in the field of machine condition monitoring, new feature learning frameworks based on compressive sampling, subspace learning techniques for machine condition monitoring, and much more. Covers the fundamental as well as the state-of-the-art approaches to machine condition monitoring guiding readers from the basics of rotating machines to the generation of knowledge using vibration signals Provides new methods, including machine learning and compressive sampling, which offer significant improvements in accuracy with reduced computational costs Features learning algorithms that can be used for fault diagnosis and prognosis Includes previously and recently developed dimensionality reduction techniques and classification algorithms Condition Monitoring with Vibration Signals: Compressive Sampling and Learning Algorithms for Rotating Machines is an excellent book for research students, postgraduate students, industrial practitioners, and researchers.

目次

Preface xvii About the Authors xxi List of Abbreviations xxiii Part I Introduction 1 1 Introduction to Machine Condition Monitoring 3 1.1 Background 3 1.2 Maintenance Approaches for Rotating Machines Failures 4 1.2.1 Corrective Maintenance 4 1.2.2 Preventive Maintenance 5 1.2.2.1 Time-Based Maintenance (TBM) 5 1.2.2.2 Condition-Based Maintenance (CBM) 5 1.3 Applications of MCM 5 1.3.1 Wind Turbines 5 1.3.2 Oil and Gas 6 1.3.3 Aerospace and Defence Industry 6 1.3.4 Automotive 7 1.3.5 Marine Engines 7 1.3.6 Locomotives 7 1.4 Condition Monitoring Techniques 7 1.4.1 Vibration Monitoring 7 1.4.2 Acoustic Emission 8 1.4.3 Fusion of Vibration and Acoustic 8 1.4.4 Motor Current Monitoring 8 1.4.5 Oil Analysis and Lubrication Monitoring 8 1.4.6 Thermography 9 1.4.7 Visual Inspection 9 1.4.8 Performance Monitoring 9 1.4.9 Trend Monitoring 10 1.5 Topic Overview and Scope of the Book 10 1.6 Summary 11 References 11 2 Principles of Rotating Machine Vibration Signals 17 2.1 Introduction 17 2.2 Machine Vibration Principles 17 2.3 Sources of Rotating Machines Vibration Signals 20 2.3.1 Rotor Mass Unbalance 21 2.3.2 Misalignment 21 2.3.3 Cracked Shafts 21 2.3.4 Rolling Element Bearings 23 2.3.5 Gears 25 2.4 Types of Vibration Signals 25 2.4.1 Stationary 26 2.4.2 Nonstationary 26 2.5 Vibration Signal Acquisition 26 2.5.1 Displacement Transducers 26 2.5.2 Velocity Transducers 26 2.5.3 Accelerometers 27 2.6 Advantages and Limitations of Vibration Signal Monitoring 27 2.7 Summary 28 References 28 Part II Vibration Signal Analysis Techniques 31 3 Time Domain Analysis 33 3.1 Introduction 33 3.1.1 Visual Inspection 33 3.1.2 Features-Based Inspection 35 3.2 Statistical Functions 35 3.2.1 Peak Amplitude 36 3.2.2 Mean Amplitude 36 3.2.3 Root Mean Square Amplitude 36 3.2.4 Peak-to-Peak Amplitude 36 3.2.5 Crest Factor (CF) 36 3.2.6 Variance and Standard Deviation 37 3.2.7 Standard Error 37 3.2.8 Zero Crossing 38 3.2.9 Wavelength 39 3.2.10 Willison Amplitude 39 3.2.11 Slope Sign Change 39 3.2.12 Impulse Factor 39 3.2.13 Margin Factor 40 3.2.14 Shape Factor 40 3.2.15 Clearance Factor 40 3.2.16 Skewness 40 3.2.17 Kurtosis 40 3.2.18 Higher-Order Cumulants (HOCs) 41 3.2.19 Histograms 42 3.2.20 Normal/Weibull Negative Log-Likelihood Value 42 3.2.21 Entropy 42 3.3 Time Synchronous Averaging 44 3.3.1 TSA Signals 44 3.3.2 Residual Signal (RES) 44 3.3.2.1 NA4 44 3.3.2.2 NA4* 45 3.3.3 Difference Signal (DIFS) 45 3.3.3.1 FM4 46 3.3.3.2 M6A 46 3.3.3.3 M8A 46 3.4 Time Series Regressive Models 46 3.4.1 AR Model 47 3.4.2 MA Model 48 3.4.3 ARMA Model 48 3.4.4 ARIMA Model 48 3.5 Filter-Based Methods 49 3.5.1 Demodulation 49 3.5.2 Prony Model 52 3.5.3 Adaptive Noise Cancellation (ANC) 53 3.6 Stochastic Parameter Techniques 54 3.7 Blind Source Separation (BSS) 54 3.8 Summary 55 References 56 4 Frequency Domain Analysis 63 4.1 Introduction 63 4.2 Fourier Analysis 64 4.2.1 Fourier Series 64 4.2.2 Discrete Fourier Transform 66 4.2.3 Fast Fourier Transform (FFT) 67 4.3 Envelope Analysis 71 4.4 Frequency Spectrum Statistical Features 73 4.4.1 Arithmetic Mean 73 4.4.2 Geometric Mean 73 4.4.3 Matched Filter RMS 73 4.4.4 The RMS of Spectral Difference 74 4.4.5 The Sum of Squares Spectral Difference 74 4.4.6 High-Order Spectra Techniques 74 4.5 Summary 75 References 76 5 Time-Frequency Domain Analysis 79 5.1 Introduction 79 5.2 Short-Time Fourier Transform (STFT) 79 5.3 Wavelet Analysis 82 5.3.1 Wavelet Transform (WT) 82 5.3.1.1 Continuous Wavelet Transform (CWT) 83 5.3.1.2 Discrete Wavelet Transform (DWT) 85 5.3.2 Wavelet Packet Transform (WPT) 89 5.4 Empirical Mode Decomposition (EMD) 91 5.5 Hilbert-Huang Transform (HHT) 94 5.6 Wigner-Ville Distribution 96 5.7 Local Mean Decomposition (LMD) 98 5.8 Kurtosis and Kurtograms 100 5.9 Summary 105 References 106 Part III Rotating Machine Condition Monitoring Using Machine Learning 115 6 Vibration-Based Condition Monitoring Using Machine Learning 117 6.1 Introduction 117 6.2 Overview of the Vibration-Based MCM Process 118 6.2.1 Fault-Detection and -Diagnosis Problem Framework 118 6.3 Learning from Vibration Data 122 6.3.1 Types of Learning 123 6.3.1.1 Batch vs. Online Learning 123 6.3.1.2 Instance-Based vs. Model-Based Learning 123 6.3.1.3 Supervised Learning vs. Unsupervised Learning 123 6.3.1.4 Semi-Supervised Learning 123 6.3.1.5 Reinforcement Learning 124 6.3.1.6 Transfer Learning 124 6.3.2 Main Challenges of Learning from Vibration Data 125 6.3.2.1 The Curse of Dimensionality 125 6.3.2.2 Irrelevant Features 126 6.3.2.3 Environment and Operating Conditions of a Rotating Machine 126 6.3.3 Preparing Vibration Data for Analysis 126 6.3.3.1 Normalisation 126 6.3.3.2 Dimensionality Reduction 127 6.4 Summary 128 References 128 7 Linear Subspace Learning 131 7.1 Introduction 131 7.2 Principal Component Analysis (PCA) 132 7.2.1 PCA Using Eigenvector Decomposition 132 7.2.2 PCA Using SVD 133 7.2.3 Application of PCA in Machine Fault Diagnosis 134 7.3 Independent Component Analysis (ICA) 137 7.3.1 Minimisation of Mutual Information 138 7.3.2 Maximisation of the Likelihood 138 7.3.3 Application of ICA in Machine Fault Diagnosis 139 7.4 Linear Discriminant Analysis (LDA) 141 7.4.1 Application of LDA in Machine Fault Diagnosis 142 7.5 Canonical Correlation Analysis (CCA) 143 7.6 Partial Least Squares (PLS) 145 7.7 Summary 146 References 147 8 Nonlinear Subspace Learning 153 8.1 Introduction 153 8.2 Kernel Principal Component Analysis (KPCA) 153 8.2.1 Application of KPCA in Machine Fault Diagnosis 156 8.3 Isometric Feature Mapping (ISOMAP) 156 8.3.1 Application of ISOMAP in Machine Fault Diagnosis 158 8.4 Diffusion Maps (DMs) and Diffusion Distances 159 8.4.1 Application of DMs in Machine Fault Diagnosis 160 8.5 Laplacian Eigenmap (LE) 161 8.5.1 Application of the LE in Machine Fault Diagnosis 161 8.6 Local Linear Embedding (LLE) 162 8.6.1 Application of LLE in Machine Fault Diagnosis 163 8.7 Hessian-Based LLE 163 8.7.1 Application of HLLE in Machine Fault Diagnosis 164 8.8 Local Tangent Space Alignment Analysis (LTSA) 165 8.8.1 Application of LTSA in Machine Fault Diagnosis 165 8.9 Maximum Variance Unfolding (MVU) 166 8.9.1 Application of MVU in Machine Fault Diagnosis 167 8.10 Stochastic Proximity Embedding (SPE) 168 8.10.1 Application of SPE in Machine Fault Diagnosis 168 8.11 Summary 169 References 170 9 Feature Selection 173 9.1 Introduction 173 9.2 Filter Model-Based Feature Selection 175 9.2.1 Fisher Score (FS) 176 9.2.2 Laplacian Score (LS) 177 9.2.3 Relief and Relief-F Algorithms 178 9.2.3.1 Relief Algorithm 178 9.2.3.2 Relief-F Algorithm 179 9.2.4 Pearson Correlation Coefficient (PCC) 180 9.2.5 Information Gain (IG) and Gain Ratio (GR) 180 9.2.6 Mutual Information (MI) 181 9.2.7 Chi-Squared (Chi-2) 181 9.2.8 Wilcoxon Ranking 181 9.2.9 Application of Feature Ranking in Machine Fault Diagnosis 182 9.3 Wrapper Model-Based Feature Subset Selection 185 9.3.1 Sequential Selection Algorithms 185 9.3.2 Heuristic-Based Selection Algorithms 185 9.3.2.1 Ant Colony Optimisation (ACO) 185 9.3.2.2 Genetic Algorithms (GAs) and Genetic Programming 187 9.3.2.3 Particle Swarm Optimisation (PSO) 188 9.3.3 Application of Wrapper Model-Based Feature Subset Selection in Machine Fault Diagnosis 189 9.4 Embedded Model-Based Feature Selection 192 9.5 Summary 193 References 194 Part IV Classification Algorithms 199 10 Decision Trees and Random Forests 201 10.1 Introduction 201 10.2 Decision Trees 202 10.2.1 Univariate Splitting Criteria 204 10.2.1.1 Gini Index 205 10.2.1.2 Information Gain 206 10.2.1.3 Distance Measure 207 10.2.1.4 Orthogonal Criterion (ORT) 207 10.2.2 Multivariate Splitting Criteria 207 10.2.3 Tree-Pruning Methods 208 10.2.3.1 Error-Complexity Pruning 208 10.2.3.2 Minimum-Error Pruning 209 10.2.3.3 Reduced-Error Pruning 209 10.2.3.4 Critical-Value Pruning 210 10.2.3.5 Pessimistic Pruning 210 10.2.3.6 Minimum Description Length (MDL) Pruning 210 10.2.4 Decision Tree Inducers 211 10.2.4.1 CART 211 10.2.4.2 ID3 211 10.2.4.3 C4.5 211 10.2.4.4 CHAID 212 10.3 Decision Forests 212 10.4 Application of Decision Trees/Forests in Machine Fault Diagnosis 213 10.5 Summary 217 References 217 11 Probabilistic Classification Methods 225 11.1 Introduction 225 11.2 Hidden Markov Model 225 11.2.1 Application of Hidden Markov Models in Machine Fault Diagnosis 228 11.3 Logistic Regression Model 230 11.3.1 Logistic Regression Regularisation 232 11.3.2 Multinomial Logistic Regression Model (MLR) 232 11.3.3 Application of Logistic Regression in Machine Fault Diagnosis 233 11.4 Summary 234 References 235 12 Artificial Neural Networks (ANNs) 239 12.1 Introduction 239 12.2 Neural Network Basic Principles 240 12.2.1 The Multilayer Perceptron 241 12.2.2 The Radial Basis Function Network 243 12.2.3 The Kohonen Network 244 12.3 Application of Artificial Neural Networks in Machine Fault Diagnosis 245 12.4 Summary 253 References 254 13 Support Vector Machines (SVMs) 259 13.1 Introduction 259 13.2 Multiclass SVMs 262 13.3 Selection of Kernel Parameters 263 13.4 Application of SVMs in Machine Fault Diagnosis 263 13.5 Summary 274 References 274 14 Deep Learning 279 14.1 Introduction 279 14.2 Autoencoders 280 14.3 Convolutional Neural Networks (CNNs) 283 14.4 Deep Belief Networks (DBNs) 284 14.5 Recurrent Neural Networks (RNNs) 285 14.6 Overview of Deep Learning in MCM 286 14.6.1 Application of AE-based DNNs in Machine Fault Diagnosis 286 14.6.2 Application of CNNs in Machine Fault Diagnosis 292 14.6.3 Application of DBNs in Machine Fault Diagnosis 296 14.6.4 Application of RNNs in Machine Fault Diagnosis 298 14.7 Summary 299 References 301 15 Classification Algorithm Validation 307 15.1 Introduction 307 15.2 The Hold-Out Technique 308 15.2.1 Three-Way Data Split 309 15.3 Random Subsampling 309 15.4 K-Fold Cross-Validation 310 15.5 Leave-One-Out Cross-Validation 311 15.6 Bootstrapping 311 15.7 Overall Classification Accuracy 312 15.8 Confusion Matrix 313 15.9 Recall and Precision 314 15.10 ROC Graphs 315 15.11 Summary 317 References 318 Part V New Fault Diagnosis Frameworks Designed for MCM 321 16 Compressive Sampling and Subspace Learning (CS-SL) 323 16.1 Introduction 323 16.2 Compressive Sampling for Vibration-Based MCM 325 16.2.1 Compressive Sampling Basics 325 16.2.2 CS for Sparse Frequency Representation 328 16.2.3 CS for Sparse Time-Frequency Representation 329 16.3 Overview of CS in Machine Condition Monitoring 330 16.3.1 Compressed Sensed Data Followed by Complete Data Construction 330 16.3.2 Compressed Sensed Data Followed by Incomplete Data Construction 331 16.3.3 Compressed Sensed Data as the Input of a Classifier 332 16.3.4 Compressed Sensed Data Followed by Feature Learning 333 16.4 Compressive Sampling and Feature Ranking (CS-FR) 333 16.4.1 Implementations 334 16.4.1.1 CS-LS 336 16.4.1.2 CS-FS 336 16.4.1.3 CS-Relief-F 337 16.4.1.4 CS-PCC 338 16.4.1.5 CS-Chi-2 338 16.5 CS and Linear Subspace Learning-Based Framework for Fault Diagnosis 339 16.5.1 Implementations 339 16.5.1.1 CS-PCA 339 16.5.1.2 CS-LDA 340 16.5.1.3 CS-CPDC 341 16.6 CS and Nonlinear Subspace Learning-Based Framework for Fault Diagnosis 343 16.6.1 Implementations 344 16.6.1.1 CS-KPCA 344 16.6.1.2 CS-KLDA 345 16.6.1.3 CS-CMDS 346 16.6.1.4 CS-SPE 346 16.7 Applications 348 16.7.1 Case Study 1 348 16.7.1.1 The Combination of MMV-CS and Several Feature-Ranking Techniques 350 16.7.1.2 The Combination of MMV-CS and Several Linear and Nonlinear Subspace Learning Techniques 352 16.7.2 Case Study 2 354 16.7.2.1 The Combination of MMV-CS and Several Feature-Ranking Techniques 354 16.7.2.2 The Combination of MMV-CS and Several Linear and Nonlinear Subspace Learning Techniques 355 16.8 Discussion 355 References 357 17 Compressive Sampling and Deep Neural Network (CS-DNN) 361 17.1 Introduction 361 17.2 Related Work 361 17.3 CS-SAE-DNN 362 17.3.1 Compressed Measurements Generation 362 17.3.2 CS Model Testing Using the Flip Test 363 17.3.3 DNN-Based Unsupervised Sparse Overcomplete Feature Learning 363 17.3.4 Supervised Fine Tuning 367 17.4 Applications 367 17.4.1 Case Study 1 367 17.4.2 Case Study 2 372 17.5 Discussion 375 References 375 18 Conclusion 379 18.1 Introduction 379 18.2 Summary and Conclusion 380 Appendix Machinery Vibration Data Resources and Analysis Algorithms 389 References 394 Index 395

「Nielsen BookData」 より

詳細情報

ページトップへ