Data analytics in bioinformatics : a machine learning perspective

Author(s)
    • Satpathy, Rabinarayan
    • Choudhury, Tanupriya
    • Satpathy, Suneeta
    • Mohanty, Sachi Nandan
    • Zhang, Xiaobo
Bibliographic Information

Data analytics in bioinformatics : a machine learning perspective

edited by Rabinarayan Satpathy ... [et al.]

Wiley-Scrivener, c2021

  • : hbk

Search this Book/Journal
Note

Includes bibliographical references and index

Description and Table of Contents

Description

Machine learning techniques are increasingly being used to address problems in computational biology and bioinformatics. Novel machine learning computational techniques to analyze high throughput data in the form of sequences, gene and protein expressions, pathways, and images are becoming vital for understanding diseases and future drug discovery. Machine learning techniques such as Markov models, support vector machines, neural networks, and graphical models have been successful in analyzing life science data because of their capabilities in handling randomness and uncertainty of data noise and in generalization. Machine Learning in Bioinformatics compiles recent approaches in machine learning methods and their applications in addressing contemporary problems in bioinformatics approximating classification and prediction of disease, feature selection, dimensionality reduction, gene selection and classification of microarray data and many more.

by "Nielsen BookData"

Details
Page Top