Deep learning techniques for biomedical and health informatics
著者
書誌事項
Deep learning techniques for biomedical and health informatics
(Studies in big data, v. 68)
Springer, c2020
- : hardcover
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Editors: Biswa Ranjan Acharya, Mamta Mittal, Ajith Abraham, Arpad Kelemen
Includes bibliographical references
内容説明・目次
内容説明
This book presents a collection of state-of-the-art approaches for deep-learning-based biomedical and health-related applications. The aim of healthcare informatics is to ensure high-quality, efficient health care, and better treatment and quality of life by efficiently analyzing abundant biomedical and healthcare data, including patient data and electronic health records (EHRs), as well as lifestyle problems. In the past, it was common to have a domain expert to develop a model for biomedical or health care applications; however, recent advances in the representation of learning algorithms (deep learning techniques) make it possible to automatically recognize the patterns and represent the given data for the development of such model.
This book allows new researchers and practitioners working in the field to quickly understand the best-performing methods. It also enables them to compare different approaches and carry forward their research in an important area that has a direct impact on improving the human life and health.
It is intended for researchers, academics, industry professionals, and those at technical institutes and R&D organizations, as well as students working in the fields of machine learning, deep learning, biomedical engineering, health informatics, and related fields.
目次
MedNLU: Natural Language Understander for Medical Texts.- Deep Learning Based Biomedical Named Entity Recognition Systems.- Disambiguation Model for Bio-Medical Named Entity Recognition.- Applications of Deep Learning in Healthcare and Biomedicine.- Deep Learning for Clinical Decision Support Systems: A Review from the Panorama of Smart Healthcare.- Review of Machine Learning and Deep Learning based Recommender Systems for Health Informatics.- Deep Learning and Explainable AI in Healthcare using EHR.- Deep Learning for Analysis of Electronic Heath Records.- Bioinformatics Using Deep Architecture.- Intelligent, Secure Big Health Data Management using Deep Learning and Blockchain Technology: An Overview.- Malaria Disease Detection using CNN Technique with SGD, RMSprop and ADAM Optimizers.- Deep Reinforcement Learning based Personalized Health Recommendations.
「Nielsen BookData」 より