Density matrix theory and applications
Author(s)
Bibliographic Information
Density matrix theory and applications
(Springer series on atomic, optical, and plasma physics, 64)
Springer, c2012
3rd ed
- : softcover
Available at 3 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Previous ed.: New York: Plenum, 1996
Includes index
Description and Table of Contents
Description
Written in a clear pedagogic style, this book deals with the application of density matrix theory to atomic and molecular physics. The aim is to precisely characterize sates by a vector and to construct general formulas and proofs of general theorems. The basic concepts and quantum mechanical fundamentals (reduced density matrices, entanglement, quantum correlations) are discussed in a comprehensive way. The discussion leads up to applications like coherence and orientation effects in atoms and molecules, decoherence and relaxation processes.
This third edition has been updated and extended throughout and contains a completely new chapter exploring nonseparability and entanglement in two-particle spin-1/2 systems. The text discusses recent studies in atomic and molecular reactions. A new chapter explores nonseparability and entanglement in two-particle spin-1/2 systems.
Table of Contents
Basic Concepts.- General Density Matrix Theory.- Coupled Systems.- Irreducible Components of the Density Matrix.- Radiation from Polarized Atoms: Quantum Beats.- Some Applications.- The Role of Orientation and Alignment in Molecular Processes.- Quantum Theory of Relaxation.
by "Nielsen BookData"