The Riemann hypothesis and the distribution of prime numbers
著者
書誌事項
The Riemann hypothesis and the distribution of prime numbers
(Mathematics research developments series)
Nova Science Publishers, c2021
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [213]-214) and index
"This book is an introductory and comprehensive presentation of the Riemann Hypothesis, one of the most important open questions in math today. It is introductory because it is written in an accessible and detailed format that makes it easy to read and understand. It is comprehensive because it explains and proves all the mathematical ideas surrounding and leading to the formulation of the hypothesis" -- Back cover
内容説明・目次
内容説明
This book is an introductory and comprehensive presentation of the Riemann Hypothesis, one of the most important open questions in math today. It is introductory because it is written in an accessible and detailed format that makes it easy to read and understand. And it is comprehensive because it explains and proves all the mathematical ideas surrounding and leading to the formulation of the hypothesis. Chapter 1 begins by defining the zeta function and exploring some of its properties when the argument is a real number. It proceeds to identify the series' domain of convergence and proves Euler's product formula. Chapter 2 introduces complex numbers and the complex analytic tools necessary to understand the zeta function in complex plane. Chapter 3 extends the domain of the zeta function for the first time by introducing the eta function. Presenting proofs by Sondow, it is shown that zeta can be defined for any complex number whose real part is positive. Next, the functional equation of the zeta function is derived in Chapter 4. This provides a method to extend the definition of zeta to the entirety of the complex plane. Chapter 5 is where the Riemann Hypothesis is properly introduced for the first time. It relates the zeros of the zeta and eta functions which leads to a simple formulation of the hypothesis. Chapters 6 and 7 connect the topics of zeta's zeros and the distribution of prime numbers. Chapter 6 introduces Riemann explicit formula and explains the use of Mobius transform to rewrite the prime counting function in terms of the Riemann prime counting one and it provides a detailed numerical example on how to use the Riemann's formula. Chapter 7 derives the von Mangoldt formula via the residue theorem and elucidates some of its important properties. Certain necessary mathematical tools, such as Fourier analysis and theta and gamma functional equations, are included in the appendices to make the chapters more concise and focused.
目次
- Preface
- The Zeta Function in the World of Real Numbers
- A Guided Tour in the World of Complex Numbers
- The Eta Series and the First Extension of Zeta
- The Functional Equation and the Second Extension of Zeta
- The Roots of the Zeta Function and the Riemann Hypothesis
- The Zeta Function and Counting the Prime Numbers
- Von Mangoldt Formula to the Rescue
- Appendix A Fourier Transform
- Appendix B The Functional Equation of the Jacobi Theta Function
- Appendix C The Functional Equations of the Gamma Function (Legendres Duplication and Eulers Reflection)
- Appendix D
- References
- Index.
「Nielsen BookData」 より