Applied multivariate statistical analysis
著者
書誌事項
Applied multivariate statistical analysis
(Pearson modern classic)
Pearson, c2019
6th ed
- : [pbk.]
大学図書館所蔵 件 / 全3件
注記
"This book originally grew out of our lecture notes for an "Applied multivariate analysis" course offered jointly by the Statistics Department and the School of Business at the University of Wisconsin-Madison"--P. xv
Includes bibliographical references and indexes
内容説明・目次
内容説明
For courses in Multivariate Statistics, Marketing Research, Intermediate Business Statistics, Statistics in Education, and graduate-level courses in Experimental Design and Statistics.
Appropriate for experimental scientists in a variety of disciplines, this market-leading text offers a readable introduction to the statistical analysis of multivariate observations. Its primary goal is to impart the knowledge necessary to make proper interpretations and select appropriate techniques for analyzing multivariate data. Ideal for a junior/senior or graduate level course that explores the statistical methods for describing and analyzing multivariate data, the text assumes two or more statistics courses as a prerequisite.
目次
I. GETTING STARTED.
1. Aspects of Multivariate Analysis.
2. Matrix Algebra and Random Vectors.
3. Sample Geometry and Random Sampling.
4. The Multivariate Normal Distribution.
II. INFERENCES ABOUT MULTIVARIATE MEANS AND LINEAR MODELS.
5. Inferences About a Mean Vector.
6. Comparisons of Several Multivariate Means.
7. Multivariate Linear Regression Models.
III. ANALYSIS OF A COVARIANCE STRUCTURE.
8. Principal Components.
9. Factor Analysis and Inference for Structured Covariance Matrices.
10. Canonical Correlation Analysis
IV. CLASSIFICATION AND GROUPING TECHNIQUES.
11. Discrimination and Classification.
12. Clustering, Distance Methods and Ordination.
Appendix.
Data Index.
Subject Index.
「Nielsen BookData」 より