Deep learning in computer vision : principles and applications
著者
書誌事項
Deep learning in computer vision : principles and applications
(Digital imaging and computer vision series)
CRC Press, c2020
- : hardback
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Deep learning algorithms have brought a revolution to the computer vision community by introducing non-traditional and efficient solutions to several image-related problems that had long remained unsolved or partially addressed. This book presents a collection of eleven chapters where each individual chapter explains the deep learning principles of a specific topic, introduces reviews of up-to-date techniques, and presents research findings to the computer vision community. The book covers a broad scope of topics in deep learning concepts and applications such as accelerating the convolutional neural network inference on field-programmable gate arrays, fire detection in surveillance applications, face recognition, action and activity recognition, semantic segmentation for autonomous driving, aerial imagery registration, robot vision, tumor detection, and skin lesion segmentation as well as skin melanoma classification. The content of this book has been organized such that each chapter can be read independently from the others. The book is a valuable companion for researchers, for postgraduate and possibly senior undergraduate students who are taking an advanced course in related topics, and for those who are interested in deep learning with applications in computer vision, image processing, and pattern recognition.
目次
Chapter 1 Accelerating the CNN Inference on FPGAs Chapter 2 Object Detection with Convolutional Neural Networks Chapter 3 Efficient Convolutional Neural Networks for Fire Detection in Surveillance Applications Chapter 4 A Multi-biometric Face Recognition System Based on Multimodal Deep Learning Representations Chapter 5 Deep LSTM-Based Sequence Learning Approaches for Action and Activity Recognition Chapter 6 Deep Semantic Segmentation in Autonomous Driving Chapter 7 Aerial Imagery Registration Using Deep Learning for UAV Geolocalization Chapter 8 Applications of Deep Learning in Robot Vision Chapter 9 Deep Convolutional Neural Networks: Foundations and Applications in Medical Imaging Chapter 10 Lossless Full-Resolution Deep Learning Convolutional Networks for Skin Lesion Boundary Segmentation Chapter 11 Skin Melanoma Classification Using Deep Convolutional Neural Networks
「Nielsen BookData」 より