Long memory in economics
著者
書誌事項
Long memory in economics
Springer, 2007
- : softcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
Long-rangedependent, or long-memory,time seriesarestationarytime series displaying a statistically signi?cant dependence between very distant obs- vations. We formalize this dependence by assuming that the autocorrelation function of these stationary series decays very slowly, hyperbolically, as a function of the time lag. Many economic series display these empirical features: volatility of asset prices returns, future interest rates, etc. There is a huge statistical literature on long-memory processes, some of this research is highly technical, so that it is cited, but often misused in the applied econometrics and empirical e- nomics literature. The ?rst purpose of this book is to present in a formal and pedagogical way some statistical methods for studying long-range dependent processes. Furthermore, the occurrence of long-memory in economic time series might be a statistical artefact as the hyperbolic decay of the sample autoc- relation function does not necessarily derive from long-range dependent p- cesses. Indeed, the realizations of non-homogeneous processes, e.g., switching regime and change-point processes, display the same empirical features.
We thus also present in this book recent statistical methods able to discriminate between the long-memory and change-point alternatives. Going beyond the purely statistical analysis of economic series, it is of interest to determine which economic mechanisms are generating the strong dependence properties of economic series, whether they are genuine, or spu- ous. The regularities of the long-memory and change-point properties across economic time series, e.g., common degree of long-range dependence and/or common change-points, suggest the existence of a common economic cause.
目次
Statistical Methods.- Recent Advances in ARCH Modelling.- Intermittency, Long-Memory and Financial Returns.- The Spectrum of Euro-Dollar.- Hoelderian Invariance Principles and Some Applications for Testing Epidemic Changes.- Adaptive Detection of Multiple Change-Points in Asset Price Volatility.- Bandwidth Choice, Optimal Rates and Adaptivity in Semiparametric Estimation of Long Memory.- Wavelet Analysis of Nonlinear Long-Range Dependent Processes. Applications to Financial Time Series.- Prediction, Orthogonal Polynomials and Toeplitz Matrices. A Fast and Reliable Approximation to the Durbin-Levinson Algorithm.- Economic Models.- A Nonlinear Structural Model for Volatility Clustering.- Volatility Clustering in Financial Markets: Empirical Facts and Agent-Based Models.- The Microeconomic Foundations of Instability in Financial Markets.- A Minimal Noise Trader Model with Realistic Time Series Properties.- Long Memory and Hysteresis.
「Nielsen BookData」 より