The wild Solanums genomes
Author(s)
Bibliographic Information
The wild Solanums genomes
(Compendium of plant genomes / series editor, Chittaranjan Kole)
Springer, c2021
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
Includes bibliographical references
Description and Table of Contents
Description
This book gathers the latest information on the organization of genomes in wild Solanum species and emphasizes how this information is yielding direct outcomes in the fields of molecular breeding, as well as a better understanding of both the patterns and processes of evolution. Cultivated Solanums, such as potato, tomato, and pepper, possess a high number of wild relatives that are of great importance for practical breeding and evolutionary studies. Their germplasm is often characterized by allelic diversity, as well as genes that are lacking in the cultivated species.
Wild Solanums have not been fully exploited by breeders. This is mainly due to the lack of information regarding their genetics and genomics. However, the genome of important cultivated Solanaceae such as potato, tomato, eggplant, and pepper has already been sequenced. On the heels of these recent developments, wild Solanum genomes are now becoming available, opening an exciting new era for both basic research and varietal development in the Solanaceae.
Table of Contents
Wild Solanums botany and distribution (introductive chapter).- Cytological details of genomes.- Tomato genetic resources.- Potato genetic resources.- Potato resistance genes.- Eggplant & pepper genetic resources.- Wild tomato genome sequences.- New genomic data into an evolutionary (phylogenetic) context.- S. commersonii genome sequence.- S. chacoense genome sequence.- Eggplant genomes.- Transposable elements.- Cultivar Improvement with Exotic Germplasm: The potato as example.- Impact of genome sequences on breeding.
by "Nielsen BookData"