Bayesian econometric methods
著者
書誌事項
Bayesian econometric methods
Produced by Amazon, c2020
2nd ed
- : pbk
- タイトル別名
-
Econometric exercises
並立書誌 全1件
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Reprint. Originally published: Cambridge : Cambridge University Press , 2020
Original issued in series: Econometric exercises ; 7
Previous ed.: 2007
Other authors: Gary Koop, Dale J. Poirier, Justin L. Tobias
Includes bibliographical references (p. 449-460) and index
内容説明・目次
内容説明
Bayesian Econometric Methods examines principles of Bayesian inference by posing a series of theoretical and applied questions and providing detailed solutions to those questions. This second edition adds extensive coverage of models popular in finance and macroeconomics, including state space and unobserved components models, stochastic volatility models, ARCH, GARCH, and vector autoregressive models. The authors have also added many new exercises related to Gibbs sampling and Markov Chain Monte Carlo (MCMC) methods. The text includes regression-based and hierarchical specifications, models based upon latent variable representations, and mixture and time series specifications. MCMC methods are discussed and illustrated in detail - from introductory applications to those at the current research frontier - and MATLAB® computer programs are provided on the website accompanying the text. Suitable for graduate study in economics, the text should also be of interest to students studying statistics, finance, marketing, and agricultural economics.
目次
- 1. The subjective interpretation of probability
- 2. Bayesian inference
- 3. Point estimation
- 4. Frequentist properties of Bayesian estimators
- 5. Interval estimation
- 6. Hypothesis testing
- 7. Prediction
- 8. Choice of prior
- 9. Asymptotic Bayes
- 10. The linear regression model
- 11. Basics of random variate generation and posterior simulation
- 12. Posterior simulation via Markov chain Monte Carlo
- 13. Hierarchical models
- 14. Latent variable models
- 15. Mixture models
- 16. Bayesian methods for model comparison, selection and big data
- 17. Univariate time series methods
- 18. State space and unobserved components models
- 19. Time series models for volatility
- 20. Multivariate time series methods
- Appendix
- Bibliography
- Index.
「Nielsen BookData」 より