Time-inconsistent control theory with finance applications

Author(s)

Bibliographic Information

Time-inconsistent control theory with finance applications

Tomas Björk, Mariana Khapko, Agatha Murgoci

(Springer finance)

Springer, c2021

Available at  / 1 libraries

Search this Book/Journal

Note

Includes bibliographical references (p. 315-321) and index

Description and Table of Contents

Description

This book is devoted to problems of stochastic control and stopping that are time inconsistent in the sense that they do not admit a Bellman optimality principle. These problems are cast in a game-theoretic framework, with the focus on subgame-perfect Nash equilibrium strategies. The general theory is illustrated with a number of finance applications.In dynamic choice problems, time inconsistency is the rule rather than the exception. Indeed, as Robert H. Strotz pointed out in his seminal 1955 paper, relaxing the widely used ad hoc assumption of exponential discounting gives rise to time inconsistency. Other famous examples of time inconsistency include mean-variance portfolio choice and prospect theory in a dynamic context. For such models, the very concept of optimality becomes problematic, as the decision maker's preferences change over time in a temporally inconsistent way. In this book, a time-inconsistent problem is viewed as a non-cooperative game between the agent's current and future selves, with the objective of finding intrapersonal equilibria in the game-theoretic sense. A range of finance applications are provided, including problems with non-exponential discounting, mean-variance objective, time-inconsistent linear quadratic regulator, probability distortion, and market equilibrium with time-inconsistent preferences. Time-Inconsistent Control Theory with Finance Applications offers the first comprehensive treatment of time-inconsistent control and stopping problems, in both continuous and discrete time, and in the context of finance applications. Intended for researchers and graduate students in the fields of finance and economics, it includes a review of the standard time-consistent results, bibliographical notes, as well as detailed examples showcasing time inconsistency problems. For the reader unacquainted with standard arbitrage theory, an appendix provides a toolbox of material needed for the book.

Table of Contents

1 Introduction.- Part I Optimal Control in Discrete Time.- 2 Dynamic Programming Theory.- 3 The Linear Quadratic Regulator.- 4 A Simple Equilibrium Model.- Part II Time-Inconsistent Control in Discrete Time.- 5 Time-Inconsistent Control Theory.- 6 Extensions and Further Results.- 7 Non-Exponential Discounting.- 8 Mean-Variance Portfolios.- 9 Time-Inconsistent Regulator Problems.- 10 A Time-Inconsistent Equilibrium Model.- Part III Optimal Control in Continuous Time.- 11 Dynamic Programming Theory.- 12 The Continuous-Time Linear Quadratic Regulator.- 13 Optimal Consumption and Investment.- 14 A Simple Equilibrium Model.- Part IV Time-Inconsistent Control in Continuous Time.- 15 Time-Inconsistent Control Theory.- 16 Special Cases and Extensions.- 17 Non-Exponential Discounting.- 18 Mean-Variance Control.- 19 The Inconsistent Linear Quadratic Regulator.- 20 A Time-Inconsistent Equilibrium Model.- Part V Optimal Stopping Theory.- 21 Optimal Stopping in Discrete Time.- 22 Optimal Stopping in Continuous Time.- Part VI Time-Inconsistent Stopping Problems.- 23 Time-Inconsistent Stopping in Discrete Time.- 24 Time-Inconsistent Stopping in Continuous Time.- 25 Time-Inconsistent Stopping Under Distorted Probabilities.- A Basic Arbitrage Theory.- References.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BC11194326
  • ISBN
    • 9783030818425
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cham
  • Pages/Volumes
    xvii, 326 p.
  • Size
    25 cm
  • Classification
  • Subject Headings
  • Parent Bibliography ID
Page Top