Machine learning and knowledge discovery in databases : research track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021 : proceedings
著者
書誌事項
Machine learning and knowledge discovery in databases : research track : European Conference, ECML PKDD 2021, Bilbao, Spain, September 13-17, 2021 : proceedings
(Lecture notes in computer science, 12975 . Lecture notes in artificial intelligence . LNCS sublibrary ; SL7 . Artificial intelligence)
Springer, c2021
- pt. 1
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"Unfortunately it had to be held online and we could only meet each other virtually."--Preface
Other editors: Fernando Pérez-Cruz, Stefan Kramer, Jesse Read, Jose A. Lozano
Includes bibliographical references and author index
内容説明・目次
内容説明
The multi-volume set LNAI 12975 until 12979 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2021, which was held during September 13-17, 2021. The conference was originally planned to take place in Bilbao, Spain, but changed to an online event due to the COVID-19 pandemic. The 210 full papers presented in these proceedings were carefully reviewed and selected from a total of 869 submissions.
The volumes are organized in topical sections as follows:
Research Track:
Part I: Online learning; reinforcement learning; time series, streams, and sequence models; transfer and multi-task learning; semi-supervised and few-shot learning; learning algorithms and applications.
Part II: Generative models; algorithms and learning theory; graphs and networks; interpretation, explainability, transparency, safety.
Part III: Generative models; search and optimization; supervised learning; text mining and natural language processing; image processing, computer vision and visual analytics.
Applied Data Science Track:
Part IV: Anomaly detection and malware; spatio-temporal data; e-commerce and finance; healthcare and medical applications (including Covid); mobility and transportation.
Part V: Automating machine learning, optimization, and feature engineering; machine learning based simulations and knowledge discovery; recommender systems and behavior modeling; natural language processing; remote sensing, image and video processing; social media.
「Nielsen BookData」 より