Introduction to Riemannian manifolds

Author(s)

Bibliographic Information

Introduction to Riemannian manifolds

John M. Lee

(Graduate texts in mathematics, 176)

Springer, c2018

2nd ed

  • : [pbk]

Other Title

Riemannian manifolds : an introduction to curvature

Related Bibliography 1 items

Available at  / 3 libraries

Search this Book/Journal

Note

"Originally published with title "Riemannian manifolds : an introduction to curvature""--T.p. verso

Includes bibliographical references (p. 415-418) and indexes

Description and Table of Contents

Description

This text focuses on developing an intimate acquaintance with the geometric meaning of curvature and thereby introduces and demonstrates all the main technical tools needed for a more advanced course on Riemannian manifolds. It covers proving the four most fundamental theorems relating curvature and topology: the Gauss-Bonnet Theorem, the Cartan-Hadamard Theorem, Bonnet's Theorem, and a special case of the Cartan-Ambrose-Hicks Theorem.

Table of Contents

Preface.- 1. What Is Curvature?.- 2. Riemannian Metrics.- 3. Model Riemannian Manifolds.- 4. Connections.- 5. The Levi-Cevita Connection.- 6. Geodesics and Distance.- 7. Curvature.- 8. Riemannian Submanifolds.- 9. The Gauss-Bonnet Theorem.- 10. Jacobi Fields.- 11. Comparison Theory.- 12. Curvature and Topology.- Appendix A: Review of Smooth Manifolds.- Appendix B: Review of Tensors.- Appendix C: Review of Lie Groups.- References.- Notation Index.- Subject Index.

by "Nielsen BookData"

Related Books: 1-1 of 1

Details

  • NCID
    BC11282638
  • ISBN
    • 9783030801069
  • LCCN
    2018943719
  • Country Code
    sz
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Cham
  • Pages/Volumes
    xiii, 437 p.
  • Size
    25 cm
  • Parent Bibliography ID
Page Top