Intense automorphisms of finite groups

著者

    • Stanojkovski, Mima

書誌事項

Intense automorphisms of finite groups

Mima Stanojkovski

(Memoirs of the American Mathematical Society, no. 1341)

American Mathematical Society, c2021

大学図書館所蔵 件 / 5

この図書・雑誌をさがす

注記

"September 2021, volume 273, number 1341 (fourth of 5 numbers)"

Includes bibliographical references (p. 115) and index

内容説明・目次

内容説明

Let G be a group. An automorphism of G is called intense if it sends each subgroup of G to a conjugate; the collection of such automorphisms is denoted by Int(G). In the special case in which p is a prime number and G is a finite p-group, one can show that Int(G) is the semidirect product of a normal p-Sylow and a cyclic subgroup of order dividing p?1. In this paper we classify the finite p-groups whose groups of intense automorphisms are not themselves p-groups. It emerges from our investigation that the structure of such groups is almost completely determined by their nilpotency class: for p > 3, they share a quotient, growing with their class, with a uniquely determined infinite 2-generated pro-p group.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC11310992
  • ISBN
    • 9781470450038
  • 出版国コード
    us
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Providence, R.I.
  • ページ数/冊数
    viii, 117 p.
  • 大きさ
    26 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ