Spectral expansions of non-self-adjoint generalized Laguerre semigroups
著者
書誌事項
Spectral expansions of non-self-adjoint generalized Laguerre semigroups
(Memoirs of the American Mathematical Society, no. 1336)
American Mathematical Society, c2021
大学図書館所蔵 全6件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"July 2021, volume 272, number 1336 (sixth of 7 numbers)"
Includes bibliographical references (p. 177-182)
内容説明・目次
内容説明
We provide the spectral expansion in a weighted Hilbert space of a substantial class of invariant non-self-adjoint and non-local Markov operators which appear in limit theorems for positive-valued Markov processes. We show that this class is in bijection with a subset of negative definite functions and we name it the class of generalized Laguerre semigroups. Our approach, which goes beyond the framework of perturbation theory, is based on an in-depth and original analysis of an intertwining relation that we establish between this class and a self-adjoint Markov semigroup, whose spectral expansion is expressed in terms of the classical Laguerre polynomials. As a by-product, we derive smoothness properties for the solution to the associated Cauchy problem as well as for the heat kernel. Our methodology also reveals a variety of possible decays, including the hypocoercivity type phenomena, for the speed of convergence to equilibrium for this class and enables us to provide an interpretation of these in terms of the rate of growth of the weighted Hilbert space norms of the spectral projections. Depending on the analytic properties of the aforementioned negative definite functions, we are led to implement several strategies, which require new developments in a variety of contexts, to derive precise upper bounds for these norms.
「Nielsen BookData」 より