Continuum percolation
Author(s)
Bibliographic Information
Continuum percolation
(Cambridge tracts in mathematics, 119)(Paperback re-issue)
Cambridge University Press, 2008
- : pbk
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"First published 1996. This digitally printed version 2008"--T.p. verso
Includes bibliographical references (p. 233-235) and index
Description and Table of Contents
Description
Many phenomena in physics, chemistry, and biology can be modelled by spatial random processes. One such process is continuum percolation, which is used when the phenomenon being modelled is made up of individual events that overlap, for example, the way individual raindrops eventually make the ground evenly wet. This is a systematic rigorous account of continuum percolation. Two models, the Boolean model and the random connection model, are treated in detail, and related continuum models are discussed. All important techniques and methods are explained and applied to obtain results on the existence of phase transitions, equality and continuity of critical densities, compressions, rarefaction, and other aspects of continuum models. This self-contained treatment, assuming only familiarity with measure theory and basic probability theory, will appeal to students and researchers in probability and stochastic geometry.
Table of Contents
- Preface
- 1. Introduction
- 2. Basic methods
- 3. Occupancy in Poisson Boolean models
- 4. Vacancy in Poisson Boolean models
- 5. Distinguishing features of the Poisson Boolean model
- 6. The Poisson random-connection model
- 7. Models driven by general processes
- 8. Other continuum percolation models
- References
- Index.
by "Nielsen BookData"