Advanced electrochemical materials in energy conversion and storage
著者
書誌事項
Advanced electrochemical materials in energy conversion and storage
(Emerging materials and technologies / series editor, Boris I. Kharissov)
CRC Press, 2022
- : hbk
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This book focuses on novel electrochemical materials particularly designed for specific energy applications. It presents the relationship between materials properties, state-of-the-art processing, and device performance and sheds light on the research, development, and deployment (RD&D) trend of emerging materials and technologies in this field.
Features:
Emphasizes electrochemical materials applied in PEM fuel cells and water splitting
Summarizes anode, cathode, electrolyte, and additive materials developed for lithium-ion batteries and reviews other batteries, including lithium-air, lithium-sulfur, sodium- and potassium-ion batteries, and multivalent-ion batteries
Discusses advanced carbon materials for supercapacitors
Highlights catalyst design and development for CO2RR and fundamentals of proton facilitated reduction reactions
With a cross-disciplinary approach, this work will be of interest to scientists and engineers across chemical engineering, mechanical engineering, materials science, chemistry, physics, and other disciplines working to advance electrochemical energy conversion and storage capabilities and applications.
目次
1. Catalyst Support Materials for Proton Exchange Membrane Fuel Cells 2. Recent Advances in Low PGM for Fuel Cell Electrocatalysis 3. Ultralow Pt Loading for a Completely New Design of PEM Fuel Cells 4. Outlines for the Next-Generation Cathode Materials Utilized in Lithium Batteries 5. Cathode Materials for Lithium-Sulfur Batteries 6. Anode Materials for Lithium-Sulfur Batteries 7. Interlayer of Lithiun-Sulfur Batteries 8. Principles and Status of Lithium-Sulfur Batteries 9. Solid-State Batteries and Interface Issues 10. Key Electrode Materials for Lithium-Ion Capacitor Batteries 11. Solar-Induced Co2 Electro-Thermochemical Conversion and Emission Reduction Principles 12. Co2 Electrochemical Reduction to CO: From Catalysts, Electrodes to Electrolytic Cells and Effect of Operating Conditions 13. Improving the Electrocatalytic Performance by Defect Engineering and External Field Regulation
「Nielsen BookData」 より