Deep learning and big data for intelligent transportation : enabling technologies and future trends
著者
書誌事項
Deep learning and big data for intelligent transportation : enabling technologies and future trends
(Studies in computational intelligence, v. 945)
Springer, c2021
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references
内容説明・目次
内容説明
This book contributes to the progress towards intelligent transportation. It emphasizes new data management and machine learning approaches such as big data, deep learning and reinforcement learning. Deep learning and big data are very energetic and vital research topics of today's technology. Road sensors, UAVs, GPS, CCTV and incident reports are sources of massive amount of data which are crucial to make serious traffic decisions. Herewith this substantial volume and velocity of data, it is challenging to build reliable prediction models based on machine learning methods and traditional relational database. Therefore, this book includes recent research works on big data, deep convolution networks and IoT-based smart solutions to limit the vehicle's speed in a particular region, to support autonomous safe driving and to detect animals on roads for mitigating animal-vehicle accidents. This book serves broad readers including researchers, academicians, students and working professional in vehicles manufacturing, health and transportation departments and networking companies.
目次
Part I: Big Data and Autonomous Vehicles.- Big Data Technologies with Computanational Model Computing using HADOOP with Scheduling Challeges.- Big Data for Autonomous Vehicles.- Part II: Deep Learning &Object detection for Safe driving.- Analysis of Target Detection and Tracking for Intelligent Vision System.- Enhanced end-to-end system for autonomous driving using deep convolutional networks.-Deep Learning Technologies to mitigate Deer-Vehicle Collisions.- Night-to-Day Road Scene Translation Using Generative Adversarial Network with Structural Similarity Loss for Night Driving Safety.- Safer-Driving: Application of Deep Transfer Learning to Build Intelligent Transportation Systems.- Leveraging CNN Deep Learning Model for Smart Parking.- Estimating Crowd Size for Public Place Surveillance using Deep Learning.- Part III: AI & IoT for intelligent transportation.- IoT Based Regional Speed Restriction Using Smart Sign Boards.- Synergy of Internet of Things with Cloud, Artificial Intelligence and Blockchain for Empowering Autonomous Vehicles.- Combining Artificial Intelligence with Robotic Process Automation - An Intelligent Automation Approach.
「Nielsen BookData」 より