Doing computational social science : a practical introduction
著者
書誌事項
Doing computational social science : a practical introduction
SAGE, c2022
- : pbk
大学図書館所蔵 全4件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [644]-655) and index
内容説明・目次
内容説明
Computational approaches offer exciting opportunities for us to do social science differently. This beginner's guide discusses a range of computational methods and how to use them to study the problems and questions you want to research.
It assumes no knowledge of programming, offering step-by-step guidance for coding in Python and drawing on examples of real data analysis to demonstrate how you can apply each approach in any discipline.
The book also:
Considers important principles of social scientific computing, including transparency, accountability and reproducibility.
Understands the realities of completing research projects and offers advice for dealing with issues such as messy or incomplete data and systematic biases.
Empowers you to learn at your own pace, with online resources including screencast tutorials and datasets that enable you to practice your skills and get up to speed.
For anyone who wants to use computational methods to conduct a social science research project, this book equips you with the skills, good habits and best working practices to do rigorous, high quality work.
目次
Introduction: Learning to do computational social science
Part I: Foundations
Chapter 1: Setting up your open source scientific computing environment
Chapter 2: Python programming: The basics
Chapter 3: Python programming: Data structures, functions and files
Chapter 4: Collecting data from Application Programming Interfaces (APIs)
Chapter 5: Collecting data from the web: Scraping
Chapter 6: Processing structured data
Chapter 7: Visualisation and exploratory data analysis
Chapter 8: Latent factors and components
Part II: Fundamentals of text analysis
Chapter 9: Processing natural language data
Chapter 10: Iterative text analysis
Chapter 11: Exploratory text analysis
Chapter 12: Text similarity and latent semantic space
Part III: Fundamentals of network analysis
Chapter 13: Social networks and relational thinking
Chapter 14: Connection and clustering in social networks
Chapter 15: Influence, inequality and power in social networks
Chapter 16: Going viral: Modelling the epidemic spread of simple contagions
Chapter 17: Not so fast: Modelling the diffusion of complex contagions
Part IV: Research ethics and machine learning
Chapter 18: Research ethics, politics and practices
Chapter 19: Machine learning: Symbolic and connectionist
Chapter 20: Supervised learning with regression and cross-validation
Chapter 21: Supervised learning with tree-based models
Chapter 22: Neural networks and deep learning
Chapter 23: Developing neural network models with Keras and Tensorflow
Part V: Bayesian machine learning and probabilistic programming
Chapter 24: Statistical machine learning and generative models
Chapter 25: Probability: A primer
Chapter 26: Approximate posterior inference with stochastic sampling and MCMC
Part VI: Bayesian data analysis and latent variable modelling with relational and text data
Chapter 27: Bayesian regression models with probabilistic programming
Chapter 28: Bayesian hierarchical regression modelling
Chapter 29: Variational Bayes and the craft of generative topic modelling
Chapter 30: Generative network analysis with Bayesian stochastic blockmodels
Part VII: Embeddings, transformer models and named entity recognition
Chapter 31: Can we model meaning?: Contextual representation and neural word embeddings
Chapter 32: Named entity recognition, transfer learning and transformer models
「Nielsen BookData」 より