Biomaterials for cancer therapeutics : evolution and innovation
著者
書誌事項
Biomaterials for cancer therapeutics : evolution and innovation
(Woodhead Publishing series in biomaterials)
Woodhead Publishing, Elsevier, c2020
2nd ed
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references and index
内容説明・目次
内容説明
Biomaterials for Cancer Therapeutics: Evolution and Innovation, Second Edition, discusses the role and potential of biomaterials in treating this prevalent disease. The first part of the book discusses the fundamentals of biomaterials for cancer therapeutics. Part Two discusses synthetic vaccines, proteins and polymers for cancer therapeutics. Part Three focuses on theranosis and drug delivery systems, while the final set of chapters look at biomaterial therapies and cancer cell interaction.
Cancer affects people of all ages, and approximately one in three people are estimated to be diagnosed with cancer during their lifetime. Extensive research is being undertaken by many different institutions to explore potential new therapeutics, and biomaterials technology is being developed to target, treat and prevent cancer. Hence, this book is a welcomed resource to the discussion.
目次
1. Cancer: so common and so difficult to deal with 2. Phenotypic evolution of cancer cells: structural requirements for survival 3. Immunoactive drug carriers in cancer therapy 4. Treating cancer by delivering drug nanocrystals 5. Polymer therapeutics 6. pH-sensitive biomaterials for cancer therapy and diagnosis 7. Nucleic acid anticancer agents 8. Biomaterials for gene editing therapeutics 9. Liquid biopsies for early cancer detection 10. Nanotechnology for cancer screening and diagnosis: from innovations to clinical applications 11. Advances and clinical challenges in biomaterials for in vivo tumor imaging 12. Macroscopic fluorescence lifetime-based Fo rster resonance energy transfer imaging for quantitative ligandreceptor binding 13. Suppression of cancer stem cells 14. Comparison of two- and three-dimensional cancer models for assessing potential cancer therapeutics 15. Engineered tumor models for cancer biology and treatment 16. Cancer mechanobiology: interaction of biomaterials with cancer cells 17. Immunostimulatory materials 18. Biomaterials for cancer immunotherapy 19. Lymph node targeting for improved potency of cancer vaccine 20. Immunogenic clearance-mediated cancer vaccination 21. The future of drug delivery in cancer treatment 22. Development of clinically effective formulations for anticancer applications: why it is so difficult?
「Nielsen BookData」 より