Applied missing data analysis
著者
書誌事項
Applied missing data analysis
(Methodology in the social sciences)
Guilford Press, c2022
2nd ed
- : hardcover
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Revised edition of the author's Applied missing data analysis, c2010
Includes bibliographical references (p. 493-517) and indexes
内容説明・目次
内容説明
*The most accessible guide to a tough methodological issue, fully updated: more than 85% new material includes 5 new chapters plus new topics.
*Includes the latest developments, a retooled organization, and dozens of new datasets.
*Translates cutting-edge procedures into language accessible to anyone doing behavioral or social research.
*For graduate students and applied researchers; of special interest in the U.S., the Netherlands, Japan, South Korea, and China.
目次
1. Introduction to Missing Data
1.1 Chapter Overview
1.2 Missing Data Patterns
1.3 Missing Data Mechanisms
1.4 Diagnosing Missing Data Mechanisms
1.5 Auxiliary Variables
1.6 Analysis Example: Preparing for Missing Data Handling
1.7 Older Missing Data Methods
1.8 Comparing Missing Data Methods via Simulation
1.9 Planned Missing Data
1.10 Power Analyses for Planned Missingness Designs
1.11 Summary and Recommended Readings
2. Maximum Likelihood Estimation
2.1 Chapter Overview
2.2 Probability Distributions versus Likelihood Functions
2.3 The Univariate Normal Distribution
2.4 Estimating Unknown Parameters
2.5 Getting an Analytic Solution
2.6 Estimating Standard Errors
2.7 Information Matrix and Parameter Covariance Matrix
2.8 Alternative Approaches to Estimating Standard Errors
2.9 Iterative Optimization Algorithms
2.10 Linear Regression
2.11 Significance Tests
2.12 Multivariate Normal Data
2.13 Categorical Outcomes: Logistic and Probit Regression
2.14 Summary and Recommended Readings
3. Maximum Likelihood Estimation with Missing Data
3.1 Chapter Overview
3.2 The Multivariate Normal Distribution Revisited
3.3 How Do Incomplete Data Records Help?
3.4 Standard Errors with Incomplete Data
3.5 The Expectation Maximization Algorithm
3.6 Linear Regression
3.7 Significance Testing
3.8 Interaction Effects
3.9 Curvilinear Effects
3.10 Auxiliary Variables
3.11 Categorical Outcomes
3.12 Summary and Recommended Readings
4. Bayesian Estimation
4.1 Chapter Overview
4.2 What Makes Bayesian Statistics Different?
4.3 Conceptual Overview of Bayesian Estimation
4.4 Bayes' Theorem
4.5 The Univariate Normal Distribution
4.6 MCMC Estimation with the Gibbs Sampler
4.7 Estimating the Mean and Variance with MCMC
4.8 Linear Regression
4.9 Assessing Convergence of the Gibbs Sampler
4.10 Multivariate Normal Data
4.11 Summary and Recommended Readings
5. Bayesian Estimation with Missing Data
5.1 Chapter Overview
5.2 Imputing an Incomplete Outcome Variable
5.3 Linear Regression
5.4 Interaction Effects
5.5 Inspecting Imputations
5.6 The Metropolis-Hastings Algorithm
5.7 Curvilinear Effects
5.8 Auxiliary Variables
5.9 Multivariate Normal Data
5.10 Summary and Recommended Readings
6. Bayesian Estimation for Categorical Variables
6.1 Chapter Overview
6.2 Latent Response Formulation for Categorical Variables
6.3 Regression with a Binary Outcome
6.4 Regression with an Ordinal Outcome
6.5 Binary and Ordinal Predictor Variables
6.6 Latent Response Formulation for Nominal Variables
6.7 Regression with a Nominal Outcome
6.8 Nominal Predictor Variables
6.9 Logistic Regression
6.10 Summary and Recommended Readings
7. Multiple Imputation
7.1 Chapter Overview
7.2 Agnostic versus Model-Based Multiple Imputation
7.3 Joint Model Imputation
7.4 Fully Conditional Specification
7.5 Analyzing Multiply-Imputed Data Sets
7.6 Pooling Parameter Estimates
7.7 Pooling Standard Errors
7.8 Test Statistic and Confidence Intervals
7.9 When Might Multiple Imputation Give Different Answers?
7.10 Interaction and Curvilinear Effects Revisited
7.11 Model-Based Imputation
7.12 Multivariate Significance Tests
7.13 Summary and Recommended Readings
8. Multilevel Missing Data
8.1 Chapter Overview
8.2 Random Intercept Regression Models
8.3 Random Coefficient Models
8.4 Multilevel Interaction Effects
8.5 Three-Level Models
8.6 Multiple Imputation
8.7 Joint Model Imputation
8.8 Fully Conditional Specification Imputation
8.9 Maximum Likelihood Estimation
8.10 Summary and Recommended Readings
9. Missing Not at Random Processes
9.1 Chapter Overview
9.2 Missing Not at Random Processes Revisited
9.3 Major Modeling Frameworks
9.4 Selection Models for Multiple Regression
9.5 Model Comparisons and Individual Influence Diagnostics
9.6 Selection Model Analysis Examples
9.7 Pattern Mixture Models for Multiple Regression
9.8 Pattern Mixture Model Analysis Examples
9.9 Longitudinal Data Analyses
9.10 Diggle-Kenward Selection Model
9.11 Shared Parameter (Random Coefficient) Selection Model
9.12 Random Coefficient Pattern Mixture Models
9.13 Longitudinal Data Analysis Examples
9.14 Summary and Recommended Readings
10. Special Topics and Applications
10.1 Chapter Overview
10.2 Descriptive Summaries, Correlations, and Subgroups
10.3 Non-Normal Predictor Variables
10.4 Non-Normal Outcome Variables
10.5 Mediation and Indirect Effects
10.6 Structural Equation Models
10.7 Scale Scores and Missing Questionnaire Items
10.8 Interactions with Scales
10.9 Longitudinal Data Analyses
10.10 Regression with a Count Outcome
10.11 Power Analyses for Growth Models with Missing Data
10.12 Summary and Recommended Readings
11. Wrap-Up
11.1 Chapter Overview
11.2 Choosing a Missing Data-Handling Procedure
11.3 Software Landscape
11.4 Reporting Results from a Missing Data Analysis
11.5 Final Thoughts and Recommended Readings
Appendix. Data Set Descriptions
Author Index
Subject Index
About the Author
「Nielsen BookData」 より