Electromagnetic radiation, scattering, and diffraction
Author(s)
Bibliographic Information
Electromagnetic radiation, scattering, and diffraction
(IEEE Press series on electromagnetic waves / Donald G. Dudley, series editor)
Wiley-IEEE Press, [2022]
- : hbk
Available at / 2 libraries
-
No Libraries matched.
- Remove all filters.
Note
Includes bibliographical references and index
Description and Table of Contents
Description
Electromagnetic Radiation, Scattering, and Diffraction Discover a graduate-level text for students specializing in electromagnetic wave radiation, scattering, and diffraction for engineering applications
In Electromagnetic Radiation, Scattering and Diffraction, distinguished authors Drs. Prabhakar H. Pathak and Robert J. Burkholder deliver a thorough exploration of the behavior of electromagnetic fields in radiation, scattering, and guided wave environments. The book tackles its subject from first principles and includes coverage of low and high frequencies. It stresses physical interpretations of the electromagnetic wave phenomena along with their underlying mathematics.
The authors emphasize fundamental principles and provide numerous examples to illustrate the concepts contained within. Students with a limited undergraduate electromagnetic background will rapidly and systematically advance their understanding of electromagnetic wave theory until they can complete useful and important graduate-level work on electromagnetic wave problems.
Electromagnetic Radiation, Scattering and Diffraction also serves as a practical companion for students trying to simulate problems with commercial EM software and trying to better interpret their results. Readers will also benefit from the breadth and depth of topics, such as:
Basic equations governing all electromagnetic (EM) phenomena at macroscopic scales are presented systematically. Stationary and relativistic moving boundary conditions are developed. Waves in planar multilayered isotropic and anisotropic media are analyzed.
EM theorems are introduced and applied to a variety of useful antenna problems. Modal techniques are presented for analyzing guided wave and periodic structures. Potential theory and Green's function methods are developed to treat interior and exterior EM problems.
Asymptotic High Frequency methods are developed for evaluating radiation Integrals to extract ray fields. Edge and surface diffracted ray fields, as well as surface, leaky and lateral wave fields are obtained. A collective ray analysis for finite conformal antenna phased arrays is developed.
EM beams are introduced and provide useful basis functions. Integral equations and their numerical solutions via the method of moments are developed. The fast multipole method is presented. Low frequency breakdown is studied. Characteristic modes are discussed.
Perfect for graduate students studying electromagnetic theory, Electromagnetic Radiation, Scattering, and Diffraction is an invaluable resource for professional electromagnetic engineers and researchers working in this area.
Table of Contents
About the Authors xvii
Preface xix
Acknowledgments xxiii
1 Maxwell's Equations, Constitutive Relations, Wave Equation, and Polarization 1
1.1 Introductory Comments 1
1.2 Maxwell's Equations 5
1.3 Constitutive Relations 10
1.4 Frequency Domain Fields 15
1.5 Kramers-Kronig Relationship 19
1.6 Vector and Scalar Wave Equations 21
1.6.1 Vector Wave Equations for EM Fields 21
1.6.2 Scalar Wave Equations for EM Fields 22
1.7 Separable Solutions of the Source-Free Wave Equation in Rectangular Coordinates and for Isotropic Homogeneous Media. Plane Waves 23
1.8 Polarization of Plane Waves, Poincare Sphere, and Stokes Parameters 29
1.8.1 Polarization States 29
1.8.2 General Elliptical Polarization 32
1.8.3 Decomposition of a Polarization State into Circularly Polarized Components 36
1.8.4 Poincare Sphere for Describing Polarization States 37
1.9 Phase and Group Velocity 40
1.10 Separable Solutions of the Source-Free Wave Equation in Cylindrical and Spherical Coordinates and for Isotropic Homogeneous Media 44
1.10.1 Source-Free Cylindrical Wave Solutions 44
1.10.2 Source-Free Spherical Wave Solutions 48
References 51
2 EM Boundary and Radiation Conditions 52
2.1 EM Field Behavior Across a Boundary Surface 52
2.2 Radiation Boundary Condition 60
2.3 Boundary Conditions at a Moving Interface 63
2.3.1 Nonrelativistic Moving Boundary Conditions 63
2.3.2 Derivation of the Nonrelativistic Field Transformations 66
2.3.3 EM Field Transformations Based on the Special Theory of Relativity 69
2.4 Constitutive Relations for a Moving Medium 84
References 85
3 Plane Wave Propagation in Planar Layered Media 87
3.1 Introduction 87
3.2 Plane Wave Reflection from a Planar Boundary Between Two Different Media 87
3.2.1 Perpendicular Polarization Case 88
3.2.2 Parallel Polarization Case 93
3.2.3 Brewster Angle b 97
3.2.4 Critical Angle c 100
3.2.5 Plane Wave Incident on a Lossy Half Space 104
3.2.6 Doppler Shift for Wave Reflection from a Moving Mirror 110
3.3 Reflection and Transmission of a Plane Wave Incident on a Planar Stratified Isotropic Medium Using a Transmission Matrix Approach 112
3.4 Plane Waves in Anisotropic Homogeneous Media 119
3.5 State Space Formulation for Waves in Planar Anisotropic Layered Media 135
3.5.1 Development of State Space Based Field Equations 135
3.5.2 Reflection and Transmission of Plane Waves at the Interface Between Two Anisotropic Half Spaces 139
3.5.3 Transmission Type Matrix Analysis of Plane Waves in Multilayered Anisotropic Media 142
References 143
4 Plane Wave Spectral Representation for EM Fields 144
4.1 Introduction 144
4.2 PWS Development 144
References 155
5 Electromagnetic Potentials and Fields of Sources in Unbounded Regions 156
5.1 Introduction to Vector and Scalar Potentials 156
5.2 Construction of the Solution for A 160
5.3 Calculation of Fields from Potentials 165
5.4 Time Dependent Potentials for Sources and Fields in Unbounded Regions 176
5.5 Potentials and Fields of a Moving Point Charge 185
5.6 Cerenkov Radiation 192
5.7 Direct Calculation of Fields of Sources in Unbounded Regions Using a Dyadic Green's Function 195
5.7.1 Fields of Sources in Unbounded, Isotropic, Homogeneous Media in Terms of a Closed Form Representation of Green's Dyadic, G 0 195
5.7.2 On the Singular Nature of G 0 (r|r ') for Observation Points Within the Source Region 197
5.7.3 Representation of the Green's Dyadic G 0 in Terms of an Integral in the Wavenumber (k) Space 201
5.7.4 Electromagnetic Radiation by a Source in a General Bianisotropic Medium Using a Green's Dyadic G a in k-Space 208
References 209
6 Electromagnetic Field Theorems and Related Topics 211
6.1 Conservation of Charge 211
6.2 Conservation of Power 212
6.3 Conservation of Momentum 218
6.4 Radiation Pressure 225
6.5 Duality Theorem 235
6.6 Reciprocity Theorems and Conservation of Reactions 242
6.6.1 The Lorentz Reciprocity Theorem 243
6.6.2 Reciprocity Theorem for Bianisotropic Media 249
6.7 Uniqueness Theorem 251
6.8 Image Theorems 254
6.9 Equivalence Theorems 258
6.9.1 Volume Equivalence Theorem for EM Scattering 258
6.9.2 A Surface Equivalence Theorem for EM Scattering 260
6.9.3 A Surface Equivalence Theorem for Antennas 270
6.10 Antenna Impedance 278
6.11 Antenna Equivalent Circuit 282
6.12 The Receiving Antenna Problem 282
6.13 Expressions for Antenna Mutual Coupling Based on Generalized Reciprocity Theorems 287
6.13.1 Circuit Form of the Reciprocity Theorem for Antenna Mutual Coupling 287
6.13.2 A Mixed Circuit Field Form of a Generalized Reciprocity Theorem for Antenna Mutual Coupling 292
6.13.3 A Mutual Admittance Expression for Slot Antennas 294
6.13.4 Antenna Mutual Coupling, Reaction Concept, and Antenna Measurements 296
6.14 Relation Between Antenna and Scattering Problems 297
6.14.1 Exterior Radiation by a Slot Aperture Antenna Configuration 297
6.14.2 Exterior Radiation by a Monopole Antenna Configuration 299
6.15 Radar Cross Section 308
6.16 Antenna Directive Gain 309
6.17 Field Decomposition Theorem 311
References 313
7 Modal Techniques for the Analysis of Guided Waves, Resonant Cavities, and Periodic Structures 314
7.1 On Modal Analysis of Some Guided Wave Problems 314
7.2 Classification of Modal Fields in Uniform Guiding Structures 314
7.2.1 TEM z Guided waves 315
7.3 TM z Guided Waves 325
7.4 TE z Guided Waves 328
7.5 Modal Expansions in Closed Uniform Waveguides 330
7.5.1 TM z Modes 331
7.5.2 TE z Modes 332
7.5.3 Orthogonality of Modes in Closed Perfectly Conducting Uniform Waveguides 334
7.6 Effect of Losses in Closed Guided Wave Structures 337
7.7 Source Excited Uniform Closed Perfectly Conducting Waveguides 338
7.8 An Analysis of Some Closed Metallic Waveguides 342
7.8.1 Modes in a Parallel Plate Waveguide 342
7.8.2 Modes in a Rectangular Waveguide 350
7.8.3 Modes in a Circular Waveguide 358
7.8.4 Coaxial Waveguide 364
7.8.5 Obstacles and Discontinuities in Waveguides 366
7.8.6 Modal Propagation Past a Slot in a Waveguide 379
7.9 Closed and Open Waveguides Containing Penetrable Materials and Coatings 383
7.9.1 Material-Loaded Closed PEC Waveguide 384
7.9.2 Material Slab Waveguide 388
7.9.3 Grounded Material Slab Waveguide 395
7.9.4 The Goubau Line 395
7.9.5 Circular Cylindrical Optical Fiber Waveguides 398
7.10 Modal Analysis of Resonators 400
7.10.1 Rectangular Waveguide Cavity Resonator 402
7.10.2 Circular Waveguide Cavity Resonator 406
7.10.3 Dielectric Resonators 408
7.11 Excitation of Resonant Cavities 409
7.12 Modal Analysis of Periodic Arrays 411
7.12.1 Floquet Modal Analysis of an Infinite Planar Periodic Array of Electric Current Sources 412
7.12.2 Floquet Modal Analysis of an Infinite Planar Periodic Array of Current Sources Configured in a Skewed Grid 419
7.13 Higher-Order Floquet Modes and Associated Grating Lobe Circle Diagrams for Infinite Planar Periodic Arrays 422
7.13.1 Grating Lobe Circle Diagrams 422
7.14 On Waves Guided and Radiated by Periodic Structures 425
7.15 Scattering by a Planar Periodic Array 430
7.15.1 Analysis of the EM Plane Wave Scattering by an Infinite Periodic Slot Array in a Planar PEC Screen 432
7.16 Finite 1-D and 2-D Periodic Array of Sources 437
7.16.1 Analysis of Finite 1-D Periodic Arrays for the Case of Uniform Source Distribution and Far Zone Observation 437
7.16.2 Analysis of Finite 2-D Periodic Arrays for the Case of Uniform Distribution and Far Zone Observation 444
7.16.3 Floquet Modal Representation for Near and Far Fields of 1-D Nonuniform Finite Periodic Array Distributions 446
7.16.4 Floquet Modal Representation for Near and Far Fields of 2-D Nonuniform Planar Periodic Finite Array Distributions 449
References 451
8 Green's Functions for the Analysis of One-Dimensional Source-Excited Wave Problems 453
8.1 Introduction to the Sturm-Liouville Form of Differential Equation for 1-D Wave Problems 453
8.2 Formulation of the Solution to the Sturm-Liouville Problem via the 1-D Green's Function Approach 456
8.3 Conditions Under Which the Green's Function Is Symmetric 463
8.4 Construction of the Green's Function G(x|x') 464
8.4.1 General Procedure to Obtain G(x|x') 464
8.5 Alternative Simplified Construction of G(x|x') Valid for the Symmetric Case 466
8.6 On the Existence and Uniqueness of G(x|x') 483
8.7 Eigenfunction Expansion Representation for G(x|x') 483
8.8 Delta Function Completeness Relation and the Construction of Eigenfunctions from G(x|x') = U (x<)T (x>) W 488
8.9 Explicit Representation of G(x|x') Using Step Functions 519
References 520
9 Applications of One-Dimensional Green's Function Approach for the Analysis of Single and Coupled Set of EM Source Excited Transmission Lines 522
9.1 Introduction 522
9.2 Analytical Formulation for a Single Transmission Line Made Up of Two Conductors 522
9.3 Wave Solution for the Two Conductor Lines When There Are No Impressed Sources Distributed Anywhere Within the Line 525
9.4 Wave Solution for the Case of Impressed Sources Placed Anywhere on a Two Conductor Line 527
9.5 Excitation of a Two Conductor Transmission Line by an Externally Incident Electromagnetic Wave 541
9.6 A Matrix Green's Function Approach for Analyzing a Set of Coupled Transmission Lines 543
9.7 Solution to the Special Case of Two Coupled Lines (N = 2) with Homogeneous Dirichlet or Neumann End Conditions 546
9.8 Development of the Multiport Impedance Matrix for a Set of Coupled Transmission Lines 551
9.9 Coupled Transmission Line Problems with Voltage Sources and Load Impedances at the End Terminals 552
References 553
10 Green's Functions for the Analysis of Two- and Three-Dimensional Source- Excited Scalar and EM Vector Wave Problems 554
10.1 Introduction 554
10.2 General Formulation for Source-Excited 3-D Separable Scalar Wave Problems Using Green's Functions 555
10.3 General Procedure for Construction of Scalar 2-D and 3-D Green's Function in Rectangular Coordinates 566
10.4 General Procedure for Construction of Scalar 2-D and 3-D Green's Functions in Cylindrical Coordinates 569
10.5 General Procedure for Construction of Scalar 3-D Green's Functions in Spherical Coordinates 572
10.6 General Formulation for Source-Excited 3-D Separable EM Vector Wave Problems Using Dyadic Green's Functions 575
10.7 Some Specific Green's Functions for 2-D Problems 583
10.7.1 Fields of a Uniform Electric Line Source 583
10.7.2 Fields of an Infinite Periodic Array of Electric Line Sources 590
10.7.3 Line Source-Excited PEC Circular Cylinder Green's Function 591
10.7.4 A Cylindrical Wave Series Expansion 596
10.7.5 Line Source Excitation of a PEC Wedge 598
10.7.6 Line Source Excitation of a PEC Parallel Plate Waveguide 602
10.7.7 The Fields of a Line Dipole Source 606
10.7.8 Fields of a Magnetic Line Source on an Infinite Planar Impedance Surface 608
10.7.9 Fields of a Magnetic Line Dipole Source on an Infinite Planar Impedance Surface 612
10.7.10 Circumferentially Propagating Surface Fields of a Line Source Excited Impedance Circular Cylinder 614
10.7.11 Analysis of Circumferentially Propagating Waves for a Line Dipole Source-Excited Impedance Circular Cylinder 617
10.7.12 Fields of a Traveling Wave Line Source 619
10.7.13 Traveling Wave Line Source Excitation of a PEC Wedge and a PEC Cylinder 620
10.8 Examples of Some Alternative Representations of Green's Functions for Scalar 3-D Point Source-Excited Cylinders, Wedges and Spheres 623
10.8.1 3-D Scalar Point Source-Excited Circular Cylinder Green's Function 623
10.8.2 3-D Scalar Point Source Excitation of a Wedge 630
10.8.3 Angularly and Radially Propagating 3-D Scalar Point Source Green's Function for a Sphere 632
10.8.4 Kontorovich-Lebedev Transform and MacDonald Based Approaches for Constructing an Angularly Propagating 3-D Point Source Scalar Wedge Green's Function 640
10.8.5 Analysis of the Fields of a Vertical Electric or Magnetic Current Point Source on a PEC Sphere 647
10.9 General Procedure for Construction of EM Dyadic Green's Functions for Source-Excited Separable Canonical Problems via Scalar Green's Functions 652
10.9.1 Summary of Procedure to Obtain the EM Fields of Arbitrarily Oriented Point Sources Exciting Canonical Separable Configurations 653
10.10 Completeness of the Eigenfunction Expansion of the Dyadic Green's Function at the Source Point 665
References 669
11 Method of Factorization and the Wiener-Hopf Technique for Analyzing Two- Part EM Wave Problems 670
11.1 The Wiener-Hopf Procedure 670
11.2 The Dual Integral Equation Approach 682
11.3 The Jones Method 691
References 696
12 Integral Equation-Based Methods for the Numerical Solution of Nonseparable EM Radiation and Scattering Problems 697
12.1 Introduction 697
12.2 Boundary Integral Equations 697
12.2.1 The Electric Field Integral Equation (EFIE) 699
12.2.2 The Magnetic Field Integral Equation (MFIE) 700
12.2.3 Combined Field and Combined Source Integral Equations 701
12.2.4 Impedance Boundary Condition 702
12.2.5 Boundary Integral Equation for a Homogeneous Material Volume 703
12.3 Volume Integral Equations 705
12.4 The Numerical Solution of Integral Equations 706
12.4.1 The Minimum Square-Error Method 706
12.4.2 The Method of Moments (MoM) 708
12.4.3 Simplification of the MoM Impedance Matrix Integrals 710
12.4.4 Expansion and Testing Functions 713
12.4.5 Low-Frequency Break-Down 718
12.5 Iterative Solution of Large MoM Matrices 720
12.5.1 Fast Iterative Solution of MoM Matrix Equations 721
12.5.2 The Fast Multipole Method (FMM) 725
12.5.3 Multilevel FMM and Fast Fourier Transform FMM 730
12.6 Antenna Modeling with the Method of Moments 732
12.7 Aperture Coupling with the Method of Moments 734
12.8 Physical Optics Methods 736
12.8.1 Physical Optics for a PEC Surface 736
12.8.2 Iterative Physical Optics 738
References 740
13 Introduction to Characteristic Modes 742
13.1 Introduction 742
13.2 Characteristic Modes from the EFIE for a Conducting Surface 743
13.2.1 Electric Field Integral Equation and Radiation Operator 743
13.2.2 Eigenfunctions of the Electric Field Radiation Operator 743
13.2.3 Characteristic Modes from the EFIE Impedance Matrix 745
13.3 Computation of Characteristic Modes 746
13.4 Solution of the EFIE Using Characteristic Modes 748
13.5 Tracking Characteristic Modes with Frequency 749
13.6 Antenna Excitation Using Characteristic Modes 749
References 750
14 Asymptotic Evaluation of Radiation and Diffraction Type Integrals for High Frequencies 752
14.1 Introduction 752
14.2 Steepest Descent Techniques for the Asymptotic Evaluation of Radiation Integrals 752
14.2.1 Topology of the Exponent in the Integrand Containing a First-Order Saddle Point 753
14.2.2 Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point in Its Integrand Which Is Free of Singularities 756
14.2.3 Asymptotic Evaluation of Integrals Containing a Higher-Order Saddle Point in Its Integrand Which Is Free of Singularities 760
14.2.4 Pauli-Clemmow Method (PCM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity 763
14.2.5 Van der Waerden Method (VWM) for the Asymptotic Evaluation of Integrals Containing a First-Order Saddle Point Near a Simple Pole Singularity 773
14.2.6 Relationship Between PCM and VWM Leading to a Generalized PCM (or GPC) Solution 775
14.2.7 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole 777
14.2.8 An Extension of PCM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and Two Nearby First-Order Poles 779
14.2.9 An Extension of VWM for Asymptotic Evaluation of an Integral Containing a First-Order Saddle Point and a Nearby Double Pole 783
14.2.10 Nonuniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Branch Point 784
14.2.11 Uniform Asymptotic Evaluation of an Integral Containing a Saddle Point and a Nearby Branch Point 789
14.3 Asymptotic Evaluation of Integrals with End Points 791
14.3.1 Watson's Lemma for Integrals 792
14.3.2 Generalized Watson's Lemma for Integrals 792
14.3.3 Integration by Parts for Asymptotic Evaluation of a Class of Integrals 792
14.4 Asymptotic Evaluation of Radiation Integrals Based on the Stationary Phase Method 794
14.4.1 Stationary Phase Evaluation of 1-D Infinite Integrals 794
14.4.2 Nonuniform Stationary Phase Evaluation of 1-D Integrals with End Points 795
14.4.3 Uniform Stationary Phase Evaluation of 1-D Integrals with a Nearby End Point 796
14.4.4 Nonuniform Stationary Phase Evaluation of 2-D Infinite Integrals 801
References 816
15 Physical and Geometrical Optics 818
15.1 The Physical Optics (PO) Approximation for PEC Surfaces 818
15.2 The Geometrical Optics (GO) Ray Field 820
15.3 GO Transport Singularities 824
15.4 Wavefronts, Stationary Phase, and GO 828
15.5 GO Incident and Reflected Ray Fields 832
15.6 Uniform GO Valid at Smooth Caustics 840
References 854
16 Geometrical and Integral Theories of Diffraction 855
16.1 Geometrical Theory of Diffraction and Its Uniform Version (UTD) 855
16.2 UTD for an Edge in an Otherwise Smooth PEC Surface 861
16.3 UTD Slope Diffraction for an Edge 872
16.4 An Alternative Uniform Solution (the UAT) for Edge Diffraction 874
16.5 UTD Solutions for Fields of Sources in the Presence of Smooth PEC Convex Surfaces 874
16.5.1 UTD Analysis of the Scattering by a Smooth, Convex Surface 876
16.5.2 UTD for the Radiation by Antennas on a Smooth, Convex Surface 885
16.5.3 UTD Analysis of the Surface Fields of Antennas on a Smooth, Convex Surface 901
16.6 UTD for a Vertex 913
16.7 UTD for Edge-Excited Surface Rays 915
16.8 The Equivalent Line Current Method (ECM) 921
16.8.1 Line Type ECM for Edge-Diffracted Ray Caustic Field Analysis 922
16.9 Equivalent Line Current Method for Interior PEC Waveguide Problems 926
16.9.1 TE y Case 927
16.9.2 TM y Case 932
16.10 The Physical Theory of Diffraction (PTD) 933
16.10.1 PTD for Edged Bodies - A Canonical Edge Diffraction Problem in the PTD Development 936
16.10.2 Details of PTD for 3-D Edged Bodies 937
16.10.3 Reduction of PTD to 2-D Edged Bodies 939
16.11 On the PTD for Aperture Problems 940
16.12 Time-Domain Uniform Geometrical Theory of Diffraction (TD-UTD) 940
16.12.1 Introductory Comments 940
16.12.2 Analytic Time Transform (ATT) 941
16.12.3 TD-UTD for a General PEC Curved Wedge 942
References 945
17 Development of Asymptotic High-Frequency Solutions to Some Canonical Problems 951
17.1 Introduction 951
17.2 Development of UTD Solutions for Some Canonical Wedge Diffraction Problems 951
17.2.1 Scalar 2-D Line Source Excitation of a Wedge 952
17.2.2 Scalar Plane Wave Excitation of a Wedge 958
17.2.3 Scalar Spherical Wave Excitation of a Wedge 960
17.2.4 EM Plane Wave Excitation of a PEC Wedge 965
17.2.5 EM Conical Wave Excitation of a PEC Wedge 968
17.2.6 EM Spherical Wave Excitation of a PEC Wedge 971
17.3 Canonical Problem of Slope Diffraction by a PEC Wedge 974
17.4 Development of a UTD Solution for Scattering by a Canonical 2-D PEC Circular Cylinder and Its Generalization to a Convex Cylinder 978
17.4.1 Field Analysis for the Shadowed Part of the Transition Region 982
17.4.2 Field Analysis for the Illuminated Part of the Transition Region 985
17.5 A Collective UTD for an Efficient Ray Analysis of the Radiation by Finite Conformal Phased Arrays on Infinite PEC Circular Cylinders 991
17.5.1 Finite Axial Array on a Circular PEC Cylinder 992
17.5.2 Finite Circumferential Array on a Circular PEC Cylinder 999
17.6 Surface, Leaky, and Lateral Waves Associated with Planar Material Boundaries 1004
17.6.1 Introduction 1004
17.6.2 The EM Fields of a Magnetic Line Source on a Uniform Planar Impedance Surface 1004
17.6.3 EM Surface and Leaky Wave Fields of a Uniform Line Source over a Planar Grounded Material Slab 1011
17.6.4 An Analysis of the Lateral Wave Phenomena Arising in the Problem of a Vertical Electric Point Current Source over a Dielectric Half Space 1019
17.7 Surface Wave Diffraction by a Planar, Two-Part Impedance Surface: Development of a Ray Solution 1032
17.7.1 TE z Case 1033
17.7.2 TM z Case 1036
17.8 Ray Solutions for Special Cases of Discontinuities in Nonconducting or Penetrable Boundaries 1038
References 1039
18 EM Beams and Some Applications 1042
18.1 Introduction 1042
18.2 Astigmatic Gaussian Beams 1043
18.2.1 Paraxial Wave Equation Solutions 1043
18.2.2 2-D Beams 1044
18.2.3 3-D Astigmatic Gaussian Beams 1047
18.2.4 3-D Gaussian Beam from a Gaussian Aperture Distribution 1048
18.2.5 Reflection of Astigmatic Gaussian Beams (GBs) 1050
18.3 Complex Source Beams and Relation to GBs 1051
18.3.1 Introduction to Complex Source Beams (CSBs) 1051
18.3.2 Complex Source Beam from Scalar Green's Function 1051
18.3.3 Representation of Arbitrary EM Fields by a CSB Expansion 1054
18.3.4 Edge Diffraction of an Incident CSB by a Curved Conducting Wedge 1056
18.4 Pulsed Complex Source Beams in the Time Domain 1061
Index 1105
by "Nielsen BookData"