Statistical mechanics : theory and molecular simulation
著者
書誌事項
Statistical mechanics : theory and molecular simulation
(Oxford graduate texts)
Oxford University Press, 2010
- : hbk
並立書誌 全1件
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [675]-691) and index
内容説明・目次
内容説明
Complex systems that bridge the traditional disciplines of physics, chemistry, biology, and materials science can be studied at an unprecedented level of detail using increasingly sophisticated theoretical methodology and high-speed computers. The aim of this book is to prepare burgeoning users and developers to become active participants in this exciting and rapidly advancing research area by uniting for the first time, in one monograph, the basic concepts of
equilibrium and time-dependent statistical mechanics with the modern techniques used to solve the complex problems that arise in real-world applications.
The book contains a detailed review of classical and quantum mechanics, in-depth discussions of the most commonly used ensembles simultaneously with modern computational techniques such as molecular dynamics and Monte Carlo, and important topics including free-energy calculations, linear-response theory, harmonic baths and the generalized Langevin equation, critical phenomena, and advanced conformational sampling methods. Burgeoning users and developers are thus provided firm grounding to
become active participants in this exciting and rapidly advancing research area, while experienced practitioners will find the book to be a useful reference tool for the field.
目次
- 1. Introduction
- 2. Classical Mechanics
- 3. Theoretical Foundations of Classical Statistical Mechanics
- 4. The Microcanonical Ensemble and Introduction to Molecular Dynamics
- 5. The Canonical Ensemble
- 6. The Isobaric Ensembles
- 7. The Grand Canonical Ensemble
- 8. Monte Carlo Methods in Statistical Mechanics
- 9. Free Energy Calculations
- 10. Quantum Mechanics
- 11. Quantum Ensembles and the Density Matrix
- 12. Quantum Ideal Gases: Fermi-Dirac and Bose-Einstein Statistics
- 13. The Feynman Path Integral
- 14. Classical Time-Dependent Statistical Mechanics and Systems Away from Equilibrium
- 15. Quantum Time-Dependent Statistical Mechanics
- 16. The Generalized Langevin Equation
- 17. Advanced Sampling Approaches
- 18. Critical Phenomena
- 19. Conclusions and Perspectives
「Nielsen BookData」 より