Computational methods for estimating the kinetic parameters of biological systems
著者
書誌事項
Computational methods for estimating the kinetic parameters of biological systems
(Methods in molecular biology / John M. Walker, series editor, 2385)(Springer protocols)
Humana Press, c2022
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references and index
内容説明・目次
内容説明
This detailed book provides an overview of various classes of computational techniques, including machine learning techniques, commonly used for evaluating kinetic parameters of biological systems. Focusing on three distinct situations, the volume covers the prediction of the kinetics of enzymatic reactions, the prediction of the kinetics of protein-protein or protein-ligand interactions (binding rates, dissociation rates, binding affinities), and the prediction of relatively large set of kinetic rates of reactions usually found in quantitative models of large biological networks. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of expert implementation advice that leads to successful results.
Authoritative and practical, Computational Methods for Estimating the Kinetic Parameters of Biological Systems will be of great interest for researchers working through the challenge of identifying the best type of algorithm and who would like to use or develop a computational method for the estimation of kinetic parameters.
目次
1. Current Approaches of Building Mechanistic Pharmacodynamic Drug-Target Binding Models
Jingyi Liang, Vi Ngoc-Nha Tran, Colin Hemez, and Pia Abel zur Wiesch
2. An Extended Model Including Target Turnover, Ligand-Target Complex Kinetics, and Binding Properties to Describe Drug-Receptor Interactions
Lambertus A. Peletier
3. Beyond the Michaelis-Menten: Bayesian Inference for Enzyme Kinetic Analysis
Hyukpyo Hong, Boseung Choi, and Jae Kyoung Kim
4. Multi-Objective Optimization Tuning Framework for Kinetic Parameter Selection and Estimation
Yadira Boada, Jesus Pico, and Alejandro Vignoni
5. Relationship between Dimensionality and Convergence of Optimization Algorithms: A Comparison between Data-Driven Normalization and Scaling Factor-Based Methods Using PEPSSBI
Andrea Degasperi, Lan K. Nguyen, Dirk Fey, and Boris N. Kholodenko
6. Dynamic Optimization Approach to Estimate Kinetic Parameters of Monod-Based Microalgae Growth Models
Siti S. Jamaian, Fathul H. Zulkifli, and Kim S. Ling
7. Automatic Assembly and Calibration of Models of Enzymatic Reactions Based on Ordinary Differential Equations
Jure Stojan, Milan Hodoscek, and Dusanka Janezic
8. Data Processing to Probe the Cellular Hydrogen Peroxide Landscape
Fernando Antunes and Paula Brito
9. Computational Methods for Structure-Based Drug Design through Systems Biology
Aman Chandra Kaushik, Shakti Sahi, and Dong-Qing Wei
10. Model Setup and Procedures for Prediction of Enzyme Reaction Kinetics with QM-Only and QM:MM Approaches
Michal Glanowski, Sangita Kachhap, Tomasz Borowski, and Maciej Szaleniec
11. The Role of Ligand Rebinding and Facilitated Dissociation on the Characterization of Dissociation Rates by Surface Plasmon Resonance (SPR) and Benchmarking Performance Metrics
Aykut Erbas and Fatih Inci
12. Computational Tools for Accurate Binding Free Energy Prediction
Maria M. Reif and Martin Zacharias
13. Computational Alanine Scanning Reveals Common Features of TCR/pMHC Recognition in HLA-DQ8-Associated Celiac Disease
Linqiong Qiu, Jianing Song, and John Z.H. Zhang
14. Umbrella Sampling-Based Method to Compute Ligand-Binding Affinity
Son Tung Ngo and Minh Quan Pham
15. Creating Maps of the Ligand Binding Landscape for Kinetics-Based Drug Discovery
Tom Dixon, Samuel D. Lotz, and Alex Dickson
16. Prediction of Protein-Protein Binding Affinities from Unbound Protein Structures
Alberto Meseguer, Patricia Bota, Narcis Fernandez-Fuentes, and Baldo Oliva
17. Parameter Optimization for Ion Channel Models: Integrating New Data with Known Channel Properties
Marco A. Navarro, Marzie Amirshenava, Autoosa Salari, Mirela Milescu, and Lorin S. Milescu
「Nielsen BookData」 より