Numerical techniques for direct and large-eddy simulations
Author(s)
Bibliographic Information
Numerical techniques for direct and large-eddy simulations
(Chapman & Hall/CRC numerical analysis and scientific computing)(A Chapman & Hall book)
CRC press, 2017, c2009
- : pbk
Available at 1 libraries
  Aomori
  Iwate
  Miyagi
  Akita
  Yamagata
  Fukushima
  Ibaraki
  Tochigi
  Gunma
  Saitama
  Chiba
  Tokyo
  Kanagawa
  Niigata
  Toyama
  Ishikawa
  Fukui
  Yamanashi
  Nagano
  Gifu
  Shizuoka
  Aichi
  Mie
  Shiga
  Kyoto
  Osaka
  Hyogo
  Nara
  Wakayama
  Tottori
  Shimane
  Okayama
  Hiroshima
  Yamaguchi
  Tokushima
  Kagawa
  Ehime
  Kochi
  Fukuoka
  Saga
  Nagasaki
  Kumamoto
  Oita
  Miyazaki
  Kagoshima
  Okinawa
  Korea
  China
  Thailand
  United Kingdom
  Germany
  Switzerland
  France
  Belgium
  Netherlands
  Sweden
  Norway
  United States of America
Note
"First issued in paperback 2017"--T.p. verso
Includes bibliographical references and index
Description and Table of Contents
Description
Compared to the traditional modeling of computational fluid dynamics, direct numerical simulation (DNS) and large-eddy simulation (LES) provide a very detailed solution of the flow field by offering enhanced capability in predicting the unsteady features of the flow field. In many cases, DNS can obtain results that are impossible using any other means while LES can be employed as an advanced tool for practical applications. Focusing on the numerical needs arising from the applications of DNS and LES, Numerical Techniques for Direct and Large-Eddy Simulations covers basic techniques for DNS and LES that can be applied to practical problems of flow, turbulence, and combustion.
After introducing Navier-Stokes equations and the methodologies of DNS and LES, the book discusses boundary conditions for DNS and LES, along with time integration methods. It then describes the numerical techniques used in the DNS of incompressible and compressible flows. The book also presents LES techniques for simulating incompressible and compressible flows. The final chapter explores current challenges in DNS and LES.
Helping readers understand the vast amount of literature in the field, this book explains how to apply relevant numerical techniques for practical computational fluid dynamics simulations and implement these methods in fluid dynamics computer programs.
Table of Contents
Introduction. Numerical Treatment of Boundary Conditions. Discrete Time Integration Methods. DNS of Incompressible Flows. DNS of Compressible Flows. LES of Incompressible Flows. LES of Compressible Flows. Further Topics and Challenges in DNS and LES. Appendix. Index.
by "Nielsen BookData"