Bibliographic Information

Computer networking : a top-down approach

James F. Kurose, Keith W. Ross

Pearson, c2022

8th, Global ed

  • : pbk

Available at  / 13 libraries

Search this Book/Journal

Note

Some copies have different pagination: 794 p

"Authorized adaptation from the United States edition, entitled Computer networking : a top-down approach, 8th edition, ISBN 978-0-13-668155-7, by James F. Kurose and Keith W. Ross, published by Pearson Education (c)2021"--T.p. verso

"This is a special edition of an established title widely used by colleges and universities throughout the world. Pearson published this exclusive edition for the benefit of students outside the United States and Canada. If you purchased this book within the United States or Canada, you should be aware that it has been imported without the approval of the Publisher or Author."--Back cover

"Digital resources for students" on verso of cover, with the student access code (12-month access)

Summary: "Welcome to the eighth edition of Computer Networking: A Top-Down Approach. Since the publication of the first edition 20 years ago, our book has been adopted for use at many hundreds of colleges and universities, translated into 14 languages, and used by over one hundred thousands students and practitioners worldwide. We've heard from many of these readers and have been overwhelmed by the positive response."-- Preface (p. 7)

Bibliography: p. 721-760

Includes index

Description and Table of Contents

Description

This print textbook is available for students to rent for their classes. The Pearson print rental program provides students with affordable access to learning materials, so they come to class ready to succeed. A top-down, layered approach to computer networking. Unique among computer networking texts, the 8th Edition of the popular Computer Networking: A Top Down Approach builds on the authors' long tradition of teaching this complex subject through a layered approach in a "top-down manner." The text works its way from the application layer down toward the physical layer, motivating students by exposing them to important concepts early in their study of networking. Focusing on the Internet and the fundamentally important issues of networking, this text provides an excellent foundation for students in computer science and electrical engineering, without requiring extensive knowledge of programming or mathematics. The 8th Edition has been updated to reflect the most important and exciting recent advances in networking, including the importance of software-defined networking (SDN) and the rapid adoption of 4G/5G networks and the mobile applications they enable.

Table of Contents

Chapter 1: Computer Networks and the Internet 1.1 What Is the Internet? 1.1.1 A Nuts-and-Bolts Description 1.1.2 A Services Description 1.1.3 What Is a Protocol? 1.2 The Network Edge 1.2.1 Access Networks 1.2.2 Physical Media 1.3 The Network Core 1.3.1 Packet Switching 1.3.2 Circuit Switching 1.3.3 A Network of Networks 1.4 Delay, Loss, and Throughput in Packet-Switched Networks 1.4.1 Overview of Delay in Packet-Switched Networks 1.4.2 Queuing Delay and Packet Loss 1.4.3 End-to-End Delay 1.4.4 Throughput in Computer Networks 1.5 Protocol Layers and Their Service Models 1.5.1 Layered Architecture 1.5.2 Encapsulation 1.6 Networks Under Attack 1.7 History of Computer Networking and the Internet 1.7.1 The Development of Packet Switching: 1961-1972 1.7.2 Proprietary Networks and Internetworking: 1972-1980 1.7.3 A Proliferation of Networks: 1980-1990 1.7.4 The Internet Explosion: The 1990s 1.7.5 The New Millennium 1.8 Summary Homework Problems and Questions Wireshark Lab Chapter 2: Application Layer 2.1 Principles of Network Applications 2.1.1 Network Application Architectures 2.1.2 Processes Communicating 2.1.3 Transport Services Available to Applications 2.1.4 Transport Services Provided by the Internet 2.1.5 Application-Layer Protocols 2.1.6 Network Applications Covered in This Book 2.2 The Web and HTTP 2.2.1 Overview of HTTP 2.2.2 Non-Persistent and Persistent Connections 2.2.3 HTTP Message Format 2.2.4 User-Server Interaction: Cookies 2.2.5 Web Caching 2.2.6 HTTP/2 2.3 Electronic Mail in the Internet 2.3.1 SMTP 2.3.2 Mail Message Formats 2.3.3 Mail Access Protocols 2.4 DNS-The Internet's Directory Service 2.4.1 Services Provided by DNS 2.4.2 Overview of How DNS Works 2.4.3 DNS Records and Messages 2.5 Peer-to-Peer Applications 2.5.1 P2P File Distribution 2.6 Video Streaming and Content Distribution Networks 2.6.1 Internet Video 2.6.2 HTTP Streaming and DASH 2.6.3 Content Distribution Networks 2.6.4 Case Studies: Netflix and YouTube 2.7 Socket Programming: Creating Network Applications 2.7.1 Socket Programming with UDP 2.7.2 Socket Programming with TCP 2.8 Summary Homework Problems and Questions Socket Programming Assignments Wireshark Labs: HTTP, DNS Chapter 3: Transport Layer 3.1 Introduction and Transport-Layer Services 3.1.1 Relationship Between Transport and Network Layers 3.1.2 Overview of the Transport Layer in the Internet 3.2 Multiplexing and Demultiplexing 3.3 Connectionless Transport: UDP 3.3.1 UDP Segment Structure 3.3.2 UDP Checksum 3.4 Principles of Reliable Data Transfer 3.4.1 Building a Reliable Data Transfer Protocol 3.4.2 Pipelined Reliable Data Transfer Protocols 3.4.3 Go-Back-N (GBN) 3.4.4 Selective Repeat (SR) 3.5 Connection-Oriented Transport: TCP 3.5.1 The TCP Connection 3.5.2 TCP Segment Structure 3.5.3 Round-Trip Time Estimation and Timeout 3.5.4 Reliable Data Transfer 3.5.5 Flow Control 3.5.6 TCP Connection Management 3.6 Principles of Congestion Control 3.6.1 The Causes and the Costs of Congestion 3.6.2 Approaches to Congestion Control 3.7 TCP Congestion Control 3.7.1 Classic TCP congestion Control 3.7.2 Network-Assisted Explicit Congestion Notification and Delay-based Congestion Control 3.7.3 Fairness 3.8 Evolution of transport-layer functionality 3.9 Summary Homework Problems and Questions Programming Assignments Wireshark Labs: Exploring TCP, UDP Chapter 4: The Network Layer: Data Plane 4.1 Overview of Network Layer 4.1.1 Forwarding and Routing: The Network Data and Control Planes 4.1.2 Network Service Models 4.2 What's Inside a Router? 4.2.1 Input Port Processing and Destination-Based Forwarding 4.2.2 Switching 4.2.3 Output Port Processing 4.2.4 Where Does Queuing Occur? 4.2.5 Packet Scheduling 4.3 The Internet Protocol (IP): IPv4, Addressing, IPv6, and More 4.3.1 IPv4 Datagram Format 4.3.2 IPv4 Addressing 4.3.3 Network Address Translation (NAT) 4.3.4 IPv6 4.4 Generalized Forwarding and SDN 4.4.1 Match 4.4.2 Action 4.4.3 OpenFlow Examples of Match-plus-action in Action 4.5 Middleboxes 4.6 Summary Homework Problems and Questions Wireshark Lab: IP Chapter 5: The Network Layer: Control Plane 5.1 Introduction 5.2 Routing Algorithms 5.2.1 The Link-State (LS) Routing Algorithm 5.2.2 The Distance-Vector (DV) Routing Algorithm 5.3 Intra-AS Routing in the Internet: OSPF 5.4 Routing Among the ISPs: BGP 5.4.1 The Role of BGP 5.4.2 Advertising BGP Route Information 5.4.3 Determining the Best Routes 5.4.4 IP-Anycast 5.4.5 Routing Policy 5.4.6 Putting the Pieces Together: Obtaining Internet Presence 5.5 The SDN Control Plane 5.5.1 The SDN Control Plane: SDN Controller and SDN Control Applications 5.5.2 OpenFlow Protocol 5.5.3 Data and Control Plane Interaction: An Example 5.5.4 SDN: Past and Future 5.6 ICMP: The Internet Control Message Protocol 5.7 Network Management, SNMP, and NETCONF/YANG 5.7.1 The Network Management Framework 5.7.2 The Simple Network Management Protocol (SNMP) 5.7.3 NETCONF and YANG 5.8 Summary Homework Problems and Questions Socket Programming Assignment Programming Assignment Wireshark Lab: ICMP Chapter 6: The Link Layer and LANs 6.1 Introduction to the Link Layer 6.1.1 The Services Provided by the Link Layer 6.1.2 Where Is the Link Layer Implemented? 6.2 Error-Detection and -Correction Techniques 6.2.1 Parity Checks 6.2.2 Checksumming Methods 6.2.3 Cyclic Redundancy Check (CRC) 6.3 Multiple Access Links and Protocols 6.3.1 Channel Partitioning Protocols 6.3.2 Random Access Protocols 6.3.3 Taking-Turns Protocols 6.3.4 DOCSIS: The Link-Layer Protocol for Cable Internet Access 6.4 Switched Local Area Networks 6.4.1 Link-Layer Addressing and ARP 6.4.2 Ethernet 6.4.3 Link-Layer Switches 6.4.4 Virtual Local Area Networks (VLANs) 6.5 Link Virtualization: A Network as a Link Layer 6.5.1 Multiprotocol Label Switching (MPLS) 6.6 Data Center Networking 6.6.1 Data Center Architectures 6.6.2 Trends in Data Center Networking 6.7 Retrospective: A Day in the Life of a Web Page Request 6.7.1 Getting Started: DHCP, UDP, IP, and Ethernet 6.7.2 Still Getting Started: DNS and ARP 6.7.3 Still Getting Started: Intra-Domain Routing to the DNS Server 6.7.4 Web Client-Server Interaction: TCP and HTTP 6.8 Summary Homework Problems and Questions Wireshark Labs: Ethernet and Home Networking Chapter 7: Wireless and Mobile Networks 7.1 Introduction 7.2 Wireless Links and Network Characteristics 7.2.1 CDMA 7.3 Wireless LANs 7.3.1 The 802.11 Architecture 7.3.2 The 802.11 MAC Protocol 7.3.3 The IEEE 802.11 Frame 7.3.4 Mobility in the Same IP Subnet 7.3.5 Advanced Features in 802.11 7.3.6 Bluetooth 7.4 Cellular Networks: 4G and 5G 7.4.1 4G LTE Cellular Networks: Architecture and Elements 7.4.2 LTE Protocol Stacks 7.4.3 LTE Radio Access Network 7.4.4 LTE Network Attachment and Power Management 7.4.5 The Global Cellular Network: a Network of Networks 7.4.6 5G Cellular Networks 7.5 Mobility Management: Principles 7.5.1 Device Mobility: a Network-layer Perspective 7.5.2 Home Networks and Roaming on Visited Networks 7.5.3 Direct and Indirect Routing to/from a Mobile Device 7.6 Mobile Management in Practice 7.6.1 Mobility Management in 4G/5G Networks 7.6.2 Mobile IP 7.7 Wireless and Mobility: Impact on Higher-Layer Protocols 7.8 Summary Homework Problems and Questions Wireshark Lab: 802.11 Chapter 8: Security in Computer Networks 8.1 What Is Network Security? 8.2 Principles of Cryptography 8.2.1 Symmetric Key Cryptography 8.2.2 Public Key Encryption 8.3 Message Integrity and Digital Signatures 8.3.1 Cryptographic Hash Functions 8.3.2 Message Authentication Code 8.3.3 Digital Signatures 8.4 End-Point Authentication 8.4.1 Building an Authentication Protocol 8.5 Securing E-Mail 8.5.1 Secure E-Mail 8.5.2 PGP 8.6 Securing TCP Connections: SSL 8.6.1 The Big Picture 8.6.2 A More Complete Picture 8.7 Network-Layer Security: IPsec and Virtual Private Networks 8.7.1 IPsec and Virtual Private Networks (VPNs) 8.7.2 The AH and ESP Protocols 8.7.3 Security Associations 8.7.4 The IPsec Datagram 8.7.5 IKE: Key Management in IPsec 8.8 Securing Wireless LANs and 4G/5G Cellular Networks 8.8.1 Authentication and Key Agreement in 802.11 Wireless LANs 8.8.2 Authentication and Key Agreement in 4G/5G Cellular Networks 8.9 Operational Security: Firewalls and Intrusion Detection Systems 8.9.1 Firewalls 8.9.2 Intrusion Detection Systems 8.10 Summary Homework Problems and Questions Wireshark Lab: SSL IPsec Lab

by "Nielsen BookData"

Details

  • NCID
    BC14535988
  • ISBN
    • 9781292405469
  • LCCN
    2019048428
  • Country Code
    uk
  • Title Language Code
    eng
  • Text Language Code
    eng
  • Place of Publication
    Harlow
  • Pages/Volumes
    793 p.
  • Size
    24 cm
  • Classification
  • Subject Headings
Page Top