Algebraic groups : the theory of group schemes of finite type over a field
著者
書誌事項
Algebraic groups : the theory of group schemes of finite type over a field
(Cambridge studies in advanced mathematics, 170)
Cambridge University Press, 2022
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Originally published: 2017
Includes bibliographical references (p. 631-640) and index
内容説明・目次
内容説明
Algebraic groups play much the same role for algebraists as Lie groups play for analysts. This book is the first comprehensive introduction to the theory of algebraic group schemes over fields that includes the structure theory of semisimple algebraic groups, and is written in the language of modern algebraic geometry. The first eight chapters study general algebraic group schemes over a field and culminate in a proof of the Barsotti-Chevalley theorem, realizing every algebraic group as an extension of an abelian variety by an affine group. After a review of the Tannakian philosophy, the author provides short accounts of Lie algebras and finite group schemes. The later chapters treat reductive algebraic groups over arbitrary fields, including the Borel-Chevalley structure theory. Solvable algebraic groups are studied in detail. Prerequisites have also been kept to a minimum so that the book is accessible to non-specialists in algebraic geometry.
目次
- Introduction
- 1. Definitions and basic properties
- 2. Examples and basic constructions
- 3. Affine algebraic groups and Hopf algebras
- 4. Linear representations of algebraic groups
- 5. Group theory: the isomorphism theorems
- 6. Subnormal series: solvable and nilpotent algebraic groups
- 7. Algebraic groups acting on schemes
- 8. The structure of general algebraic groups
- 9. Tannaka duality: Jordan decompositions
- 10. The Lie algebra of an algebraic group
- 11. Finite group schemes
- 12. Groups of multiplicative type: linearly reductive groups
- 13. Tori acting on schemes
- 14. Unipotent algebraic groups
- 15. Cohomology and extensions
- 16. The structure of solvable algebraic groups
- 17. Borel subgroups and applications
- 18. The geometry of algebraic groups
- 19. Semisimple and reductive groups
- 20. Algebraic groups of semisimple rank one
- 21. Split reductive groups
- 22. Representations of reductive groups
- 23. The isogeny and existence theorems
- 24. Construction of the semisimple groups
- 25. Additional topics
- Appendix A. Review of algebraic geometry
- Appendix B. Existence of quotients of algebraic groups
- Appendix C. Root data
- Bibliography
- Index.
「Nielsen BookData」 より