Topics in global real analytic geometry

著者
書誌事項

Topics in global real analytic geometry

Francesca Acquistapace, Fabrizio Broglia, José F. Fernando

(Springer monographs in mathematics)

Springer, 2022

この図書・雑誌をさがす
注記

Includes bibliographical references (p. 263-269) and index

内容説明・目次

内容説明

In the first two chapters we review the theory developped by Cartan, Whitney and Tognoli. Then Nullstellensatz is proved both for Stein algebras and for the algebra of real analytic functions on a C-analytic space. Here we find a relation between real Nullstellensatz and seventeenth Hilbert's problem for positive semidefinite analytic functions. Namely, a positive answer to Hilbert's problem implies a solution for the real Nullstellensatz more similar to the one for real polinomials. A chapter is devoted to the state of the art on this problem that is far from a complete answer. In the last chapter we deal with inequalities. We describe a class of semianalytic sets defined by countably many global real analytic functions that is stable under topological properties and under proper holomorphic maps between Stein spaces, that is, verifies a direct image theorem. A smaller class admits also a decomposition into irreducible components as it happens for semialgebraic sets. During the redaction some proofs have been simplified with respect to the original ones.

目次

Introduction Chapter 1. The class of C-analytic spaces Chapter 2. More on analytic sets Chapter 3. Nullstellensatze Chapter 4. The 17th Hilbert's Problem for real analytic functions Chapter 5. Analytic inequalities References

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BC15373123
  • ISBN
    • 9783030966652
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xvii, 273 p.
  • 大きさ
    25 cm
  • 親書誌ID
ページトップへ