Lattice rules : numerical integration, approximation, and discrepancy

書誌事項

Lattice rules : numerical integration, approximation, and discrepancy

Josef Dick, Peter Kritzer, Friedrich Pillichshammer

(Springer series in computational mathematics, v. 58)

Springer, c2022

大学図書館所蔵 件 / 3

この図書・雑誌をさがす

注記

Includes bibliographical references (p. 563-575) and index

内容説明・目次

内容説明

Lattice rules are a powerful and popular form of quasi-Monte Carlo rules based on multidimensional integration lattices. This book provides a comprehensive treatment of the subject with detailed explanations of the basic concepts and the current methods used in research. This comprises, for example, error analysis in reproducing kernel Hilbert spaces, fast component-by-component constructions, the curse of dimensionality and tractability, weighted integration and approximation problems, and applications of lattice rules.

目次

Introduction.- Integration of Smooth Periodic Functions.- Constructions of Lattice Rules.- Modified Construction Schemes.- Discrepancy of Lattice Point Sets.- Extensible Lattice Point Sets.- Lattice Rules for Nonperiodic Integrands.- Intrgration with Respect to Probability Measures.- Integration of Analytic Functions.- Korobov's p-Sets.- Lattice Rules in the Randomized Setting.- Stability of Lattice Rules.- L2-Approximation Using Lattice Rules.- L -Approximation Using Lattice Rules.- Multiple Rank-1 Lattice Point Sets.- Fast QMC Matrix-Vector Multiplication.- Partial Diffeential Equations With Random Coefficients.- Numerical Experiments for Lattice Rule Construction Algorithms.- References.- Index.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC15602118
  • ISBN
    • 9783031099502
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xvi, 580 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ