The mathematics of India : concepts, methods, connections
著者
書誌事項
The mathematics of India : concepts, methods, connections
(Sources and studies in the history of mathematics and physical sciences)
Springer, c2018
- : pbk
大学図書館所蔵 全3件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
"This work is a co-publication with Hindustan Book Agency, New Delhi" -- T. p. verso
Includes bibliographical references (p. [423]-426) and index
内容説明・目次
内容説明
This book identifies three of the exceptionally fruitful periods of the millennia-long history of the mathematical tradition of India: the very beginning of that tradition in the construction of the now-universal system of decimal numeration and of a framework for planar geometry; a classical period inaugurated by Aryabhata's invention of trigonometry and his enunciation of the principles of discrete calculus as applied to trigonometric functions; and a final phase that produced, in the work of Madhava, a rigorous infinitesimal calculus of such functions. The main highlight of this book is a detailed examination of these critical phases and their interconnectedness, primarily in mathematical terms but also in relation to their intellectual, cultural and historical contexts.Recent decades have seen a renewal of interest in this history, as manifested in the publication of an increasing number of critical editions and translations of texts, as well as in an informed analytic interpretation of their content by the scholarly community. The result has been the emergence of a more accurate and balanced view of the subject, and the book has attempted to take an account of these nascent insights. As part of an endeavour to promote the new awareness, a special attention has been given to the presentation of proofs of all significant propositions in modern terminology and notation, either directly transcribed from the original texts or by collecting together material from several texts.
目次
Chapter 1. Background: Culture and Language.- Chapter 2. Vedic Geometry.- Chapter 3. Antecedents? Mathematics in the Indus Valley.- Chapter 4. Decimal Numbers.- Chapter 5. Numbers in the Vedic Literature.- Chapter 6. From 500 BCE to 500 CE.- Chapter 7. The Mathematics of the Ganitapada.- Chapter 8. From Brahmagupta to Bhaskara II to Narayana.- Chapter 9. The Nila Phenomenon.- Chapter 10. Nila Mathematics (General Survey).- Chapter 11. The pi-series.- Chapter 12. The Sine and Cosine Series.- Chapter 13. The pi-Series Revisited: Algebra in Analysis.- Chapter 14. What is Indian about the Mathematics of India?.- Chapter 15. What is Indian . . .? The Question of Proofs.- Chapter 16. Upasamhara.
「Nielsen BookData」 より