Treatise on intuitionistic type theory

著者
    • Granström, Johan Georg
書誌事項

Treatise on intuitionistic type theory

Johan Georg Granström

(Logic, epistemology, and the unity of science / editors, Shahid Rahman, John Symons, v. 22)

Springer, c2011

  • : pbk

この図書・雑誌をさがす
注記

Includes bibliographical references (p. [175]-185) and indexes

内容説明・目次

内容説明

Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.

目次

Contents.- List of Figures.- List of Tables.- Introduction.- Chapter I. Prolegomena. 1. A treefold correspondence.- 2. The acts of the mind.- 3. The principle of compositionality.- 4. Lingua characteristica.- Chapter II. Truth of Knowledge. 1. The meaning of meaning.- 2. A division of being.- 3. Mathematical entities.- 4. Judgement and assertion.- 5. Reasoning and demonstration.- 6. The proposition.- 7. The laws of logic.- 8. Variables and generality.- 9. Division of definitions.- Chapter III. The Notion of Set. 1. A History of set-like notions.- 2. Set-theoretical notation.- 3. Making universal concepts ito objects of thought.- 4. Canonical sets and elements.- 5. How to define a canonical set.- 6. More canonical sets.- Chapter IV. Reference and Computation. 1. Functions, algorithms, and programs.- 2. The concept of function.- 3. A formalization of computation.- 4. Noncanonical sets and elements.- 5. Nominal definitions.- 6. Functions as objects.- 7. Families of sets.- Chapter V. Assumption and Substitution. 1. The concept of function revisited.- 2. Hypothetical assertions.- 3. The calculus of substitutions.- 4. Sets and elements in hypothetical assertions.- 5. Closures and -calculas.- 6. The disjoint union of a family of sets.- 7. Elimination rukes.- 8. Propositions as sets.- Chapter VI. Intuitionism. 1. The intuitionistic interpretation of apagoge.- 2. the law of excluded middle.- 3. The philosophy of mathematics.- Bibliography.- Index of Proper Names.- Index of Subjects.-

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示
詳細情報
  • NII書誌ID(NCID)
    BC16422610
  • ISBN
    • 9789400736399
  • 出版国コード
    gw
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    New York
  • ページ数/冊数
    xiii, 196 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ