Treatise on intuitionistic type theory
著者
書誌事項
Treatise on intuitionistic type theory
(Logic, epistemology, and the unity of science / editors, Shahid Rahman, John Symons, v. 22)
Springer, c2011
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [175]-185) and indexes
内容説明・目次
内容説明
Intuitionistic type theory can be described, somewhat boldly, as a partial fulfillment of the dream of a universal language for science. This book expounds several aspects of intuitionistic type theory, such as the notion of set, reference vs. computation, assumption, and substitution. Moreover, the book includes philosophically relevant sections on the principle of compositionality, lingua characteristica, epistemology, propositional logic, intuitionism, and the law of excluded middle. Ample historical references are given throughout the book.
目次
Contents.- List of Figures.- List of Tables.- Introduction.- Chapter I. Prolegomena. 1. A treefold correspondence.- 2. The acts of the mind.- 3. The principle of compositionality.- 4. Lingua characteristica.- Chapter II. Truth of Knowledge. 1. The meaning of meaning.- 2. A division of being.- 3. Mathematical entities.- 4. Judgement and assertion.- 5. Reasoning and demonstration.- 6. The proposition.- 7. The laws of logic.- 8. Variables and generality.- 9. Division of definitions.- Chapter III. The Notion of Set. 1. A History of set-like notions.- 2. Set-theoretical notation.- 3. Making universal concepts ito objects of thought.- 4. Canonical sets and elements.- 5. How to define a canonical set.- 6. More canonical sets.- Chapter IV. Reference and Computation. 1. Functions, algorithms, and programs.- 2. The concept of function.- 3. A formalization of computation.- 4. Noncanonical sets and elements.- 5. Nominal definitions.- 6. Functions as objects.- 7. Families of sets.- Chapter V. Assumption and Substitution. 1. The concept of function revisited.- 2. Hypothetical assertions.- 3. The calculus of substitutions.- 4. Sets and elements in hypothetical assertions.- 5. Closures and -calculas.- 6. The disjoint union of a family of sets.- 7. Elimination rukes.- 8. Propositions as sets.- Chapter VI. Intuitionism. 1. The intuitionistic interpretation of apagoge.- 2. the law of excluded middle.- 3. The philosophy of mathematics.- Bibliography.- Index of Proper Names.- Index of Subjects.-
「Nielsen BookData」 より