Network science : 7th International Winter Conference, NetSci-X 2022, Porto, Portugal, February 8-11, 2022 : proceedings

著者

    • NetSci-X (Conference)
    • Ribeiro, Pedro

書誌事項

Network science : 7th International Winter Conference, NetSci-X 2022, Porto, Portugal, February 8-11, 2022 : proceedings

Pedro Ribeiro ... [et al.] (eds.)

(Lecture notes in computer science, 13197)

Springer, c2022

  • : [pbk.]

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

"LNCS sublibrary: SL3 - Information systems and applications, incl. Internet/Web, and HCI"--T.p. verso

Includes bibliographical references and index

内容説明・目次

内容説明

This book constitutes the refereed proceedings of the 7th International Conference and School of Network Science, NetSci-X 2022, held in Porto, Portugal, in February 2021. The 13 full papers were carefully reviewed and selected from 19 submissions. The papers deal with the study of network models in domains ranging from biology and physics to computer science, from financial markets to cultural integration, and from social media to infectious diseases.

目次

Using localized attacks with probabilistic failures to model seismic events over physical-logical interdependent network.- A Historical Perspective On International Treaties Via Hypernetwork Science.- On the Number of Edges of the Frechet Mean and Median Graphs.- Core but not Peripheral Online Social Ties is a Protective Factor against Depression: Evidence from a Nationally Representative Sample of Young Adults.- Deep Topological Embedding with Convolutional Neural Networks for Complex Network Classification.- Modularity-based Backbone Extraction in Weighted Complex Networks.- Vessel destination prediction using a graph-based machine learning model.- Hunting for Dual-target Set on a Class of Hierarchical Networks.- Generalized Linear Models Network Autoregression .- Constructing Provably Robust Scale-free Networks.- Functional characterization of transcriptional regulatory networks of yeast species.- Competitive Information Spreading on Modular Networks.- HyperNetVec: Fast and Scalable Hierarchical Embedding for Hypergraphs.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BC16711356
  • ISBN
    • 9783030972394
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xii, 183 p.
  • 大きさ
    24 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ