Maximal functions, Littlewood-Paley theory, Riesz Transforms and Atomic Decomposition in the multi-parameter flag setting
著者
書誌事項
Maximal functions, Littlewood-Paley theory, Riesz Transforms and Atomic Decomposition in the multi-parameter flag setting
(Memoirs of the American Mathematical Society, no. 1373)
American Mathematical Society, c2022
大学図書館所蔵 件 / 全4件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
"September 2022, volume 279, number 1373 (second of 6 numbers)"
Includes bibliographical references (p. 101-102)
内容説明・目次
内容説明
In this paper, we develop via real variable methods various characterisations of the Hardy spaces in the multi-parameter flag setting. These characterisations include those via, the non-tangential and radial maximal function, the Littlewood–Paley square function and area integral, Riesz transforms and the atomic decom-position in the multi-parameter flag setting. The novel ingredients in this paper include (1) establishing appropriate discrete Calder´on reproducing formulae in the flag setting and a version of the Plancherel–P´olya inequalities for flag quadratic forms; (2) introducing the maximal function and area function via flag Poisson kernels and flag version of harmonic functions; (3) developing an atomic decom-position via the finite speed propagation and area function in terms of flag heat semigroups. As a consequence of these real variable methods, we obtain the full characterisations of the multi-parameter Hardy space with the flag structure.
「Nielsen BookData」 より