Randomized algorithms for matrices and data
Author(s)
Bibliographic Information
Randomized algorithms for matrices and data
(Foundations and trends in entrepreneurship, v. 3,
now Publishers, c2011
- : pbk
Available at / 1 libraries
-
No Libraries matched.
- Remove all filters.
Note
Bibliography: p. 91-103
Description and Table of Contents
Description
Randomized algorithms for very large matrix problems have received a great deal of attention in recent years. Much of this work was motivated by problems in large-scale data analysis, largely since matrices are popular structures with which to model data drawn from a wide range of application domains, and the success of this line of work opens the possibility of performing matrix-based computations with truly massive data sets.
Originating within theoretical computer science, this work was subsequently extended and applied in important ways by researchers from numerical linear algebra, statistics, applied mathematics, data analysis, and machine learning, as well as domain scientists. It provides a detailed overview, appropriate for both students and researchers from all of these areas, of recent work on the theory of randomized matrix algorithms as well as the application of those ideas to the solution of practical problems in large-scale data analysis.
By focusing on ubiquitous and fundamental problems such as least-squares approximation and low-rank matrix approximation that have been at the center of recent developments, an emphasis is placed on a few simple core ideas that underlie not only recent theoretical advances but also the usefulness of these algorithmic tools in large-scale data applications.
Table of Contents
1: Introduction 2: Matrices in large-scale scientific data analysis 3: Randomization applied to matrix problems 4: Randomized algorithms for least-squares approximation 5: Randomized algorithms for low-rank matrix approximation 6: Empirical observations 7: A few general thoughts, and a few lessons learned 8: Conclusion. Acknowledgements. References
by "Nielsen BookData"