Factor analysis and dimension reduction in R : a social scientist's toolkit
著者
書誌事項
Factor analysis and dimension reduction in R : a social scientist's toolkit
Routledge, 2023
- : pbk
大学図書館所蔵 全1件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. [545]-554) and index
内容説明・目次
内容説明
Factor Analysis and Dimension Reduction in R provides coverage, with worked examples, of a large number of dimension reduction procedures along with model performance metrics to compare them. Factor analysis in the form of principal components analysis (PCA) or principal factor analysis (PFA) is familiar to most social scientists. However, what is less familiar is understanding that factor analysis is a subset of the more general statistical family of dimension reduction methods.
The social scientist's toolkit for factor analysis problems can be expanded to include the range of solutions this book presents. In addition to covering FA and PCA with orthogonal and oblique rotation, this book's coverage includes higher-order factor models, bifactor models, models based on binary and ordinal data, models based on mixed data, generalized low-rank models, cluster analysis with GLRM, models involving supplemental variables or observations, Bayesian factor analysis, regularized factor analysis, testing for unidimensionality, and prediction with factor scores. The second half of the book deals with other procedures for dimension reduction. These include coverage of kernel PCA, factor analysis with multidimensional scaling, locally linear embedding models, Laplacian eigenmaps, diffusion maps, force directed methods, t-distributed stochastic neighbor embedding, independent component analysis (ICA), dimensionality reduction via regression (DRR), non-negative matrix factorization (NNMF), Isomap, Autoencoder, uniform manifold approximation and projection (UMAP) models, neural network models, and longitudinal factor analysis models. In addition, a special chapter covers metrics for comparing model performance.
Features of this book include:
Numerous worked examples with replicable R code
Explicit comprehensive coverage of data assumptions
Adaptation of factor methods to binary, ordinal, and categorical data
Residual and outlier analysis
Visualization of factor results
Final chapters that treat integration of factor analysis with neural network and time series methods
Presented in color with R code and introduction to R and RStudio, this book will be suitable for graduate-level and optional module courses for social scientists, and on quantitative methods and multivariate statistics courses.
目次
PART I: MULTIVARIATE ANALYSIS OF FACTORS AND COMPONENTS
Chapter 1: Factor Analysis: Purposes and Research Questions
Chapter 2: Dealing with the Assumptions and Limitations of Factor Analysis
Chapter 3: Fundamental Concepts and Functions in Factor Analysis
Chapter 4: Quick Start: Principal Axis Factoring (FA) in R
Chapter 5: Quick Start: Confirmatory Factor Analysis in R
Chapter 6. Quick Start: Principal Components Analysis (PCA) in R
Chapter 7: Oblique and Higher Order Factor Models
Chapter 8: Factor Analysis for Binary, Ordinal, and Mixed Data
Chapter 9: FA in Greater Detail
Chapter 10: PCA in Greater Detail
PART II: ADDITIONAL TOOLS FOR DIMENSION REDUCTION
Chapter 11: Sixteen Additional Methods for Dimension Reduction (DimRed)
Chapter 12: Metrics for Comparing and Evaluating Dimension Reduction Models
Chapter 13: Recipes: An Alternative System for Dimension Reduction
Chapter14: Factor Analysis for Neural Models
Chapter 15: Factor Analysis for Time Series Data
APPENDICES
I. Datasets used in this volume
2. Introduction to R and RStudio
「Nielsen BookData」 より