Reinforcement learning with hybrid quantum approximation in the NISQ context
著者
書誌事項
Reinforcement learning with hybrid quantum approximation in the NISQ context
Springer Fachmedien Wiesbaden GmbH : Springer Vieweg, c2022
大学図書館所蔵 件 / 全1件
-
該当する所蔵館はありません
- すべての絞り込み条件を解除する
注記
Includes bibliographical references (p. 127-134)
内容説明・目次
内容説明
This book explores the combination of Reinforcement Learning and Quantum Computing in the light of complex attacker-defender scenarios. Reinforcement Learning has proven its capabilities in different challenging optimization problems and is now an established method in Operations Research. However, complex attacker-defender scenarios have several characteristics that challenge Reinforcement Learning algorithms, requiring enormous computational power to obtain the optimal solution. The upcoming field of Quantum Computing is a promising path for solving computationally complex problems. Therefore, this work explores a hybrid quantum approach to policy gradient methods in Reinforcement Learning. It proposes a novel quantum REINFORCE algorithm that enhances its classical counterpart by Quantum Variational Circuits. The new algorithm is compared to classical algorithms regarding the convergence speed and memory usage on several attacker-defender scenarios with increasing complexity. In addition, to study its applicability on today's NISQ hardware, the algorithm is evaluated on IBM's quantum computers, which is accompanied by an in-depth analysis of the advantages of Quantum Reinforcement Learning.
目次
Motivation: Complex Attacker-Defender Scenarios - The eternal conflict., The Information Game - A special Attacker-Defender Scenario., Reinforcement Learning and Bellman's Principle of Optimality., Quantum Reinforcement Learning - Connecting Reinforcement Learning and Quantum Computing.- Approximation in Quantum Computing.- Advanced Quantum Policy Approximation in Policy Gradient Rein-forcement Learning.- Applying Quantum REINFORCE to the Information Game.- Evaluating quantum REINFORCE on IBM's Quantum Hardware.- Future Steps in Quantum Reinforcement Learning for Complex Scenarios.- Conclusion.
「Nielsen BookData」 より