Tree-based methods for statisitcal learning in R
著者
書誌事項
Tree-based methods for statisitcal learning in R
(Chapman & Hall/CRC data science series)(A Chapman & Hall book)
CRC Press, 2022
1st ed
- : hbk
大学図書館所蔵 全2件
  青森
  岩手
  宮城
  秋田
  山形
  福島
  茨城
  栃木
  群馬
  埼玉
  千葉
  東京
  神奈川
  新潟
  富山
  石川
  福井
  山梨
  長野
  岐阜
  静岡
  愛知
  三重
  滋賀
  京都
  大阪
  兵庫
  奈良
  和歌山
  鳥取
  島根
  岡山
  広島
  山口
  徳島
  香川
  愛媛
  高知
  福岡
  佐賀
  長崎
  熊本
  大分
  宮崎
  鹿児島
  沖縄
  韓国
  中国
  タイ
  イギリス
  ドイツ
  スイス
  フランス
  ベルギー
  オランダ
  スウェーデン
  ノルウェー
  アメリカ
注記
Includes bibliographical references (p. 359-380) and index
内容説明・目次
内容説明
Thorough coverage, from the ground up, of tree-based methods (e.g., CART, conditional inference trees, bagging, boosting, and random forests).
A companion website containing additional supplementary material and the code to reproduce every example and figure in the book.
A companion R package, called treemisc, which contains several data sets and functions used throughout the book (e.g., there's an implementation of gradient tree boosting with LAD loss that shows how to perform the line search step by updating the terminal node estimates of a fitted rpart tree).
Interesting examples that are of practical use; for example, how to construct partial dependence plots from a fitted model in Spark MLlib (using only Spark operations), or post-processing tree ensembles via the LASSO to reduce the number of trees while maintaining, or even improving performance.
目次
1 Introduction 2 Binary recursive partitioning with CART 3 Conditional inference trees 4 "The hitchhiker's GUIDE to modern decision trees" 5 Ensemble algorithms 6 Peeking inside the "black box": post-hoc interpretability 7 Random forests 8 Gradient boosting machines
「Nielsen BookData」 より