Hands-on scikit-learn for machine learning applications : data science fundamentals with Python

著者

    • Paper, David

書誌事項

Hands-on scikit-learn for machine learning applications : data science fundamentals with Python

David Paper

(Books for professionals by professionals)

Apress, c2020

  • : pbk

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes index

内容説明・目次

内容説明

Aspiring data science professionals can learn the Scikit-Learn library along with the fundamentals of machine learning with this book. The book combines the Anaconda Python distribution with the popular Scikit-Learn library to demonstrate a wide range of supervised and unsupervised machine learning algorithms. Care is taken to walk you through the principles of machine learning through clear examples written in Python that you can try out and experiment with at home on your own machine. All applied math and programming skills required to master the content are covered in this book. In-depth knowledge of object-oriented programming is not required as working and complete examples are provided and explained. Coding examples are in-depth and complex when necessary. They are also concise, accurate, and complete, and complement the machine learning concepts introduced. Working the examples helps to build the skills necessary to understand and apply complex machine learning algorithms. Hands-on Scikit-Learn for Machine Learning Applications is an excellent starting point for those pursuing a career in machine learning. Students of this book will learn the fundamentals that are a prerequisite to competency. Readers will be exposed to the Anaconda distribution of Python that is designed specifically for data science professionals, and will build skills in the popular Scikit-Learn library that underlies many machine learning applications in the world of Python. What You'll Learn Work with simple and complex datasets common to Scikit-Learn Manipulate data into vectors and matrices for algorithmic processing Become familiar with the Anaconda distribution used in data science Apply machine learning with Classifiers, Regressors, and Dimensionality Reduction Tune algorithms and find the best algorithms for each dataset Load data from and save to CSV, JSON, Numpy, and Pandas formats Who This Book Is For The aspiring data scientist yearning to break into machine learning through mastering the underlying fundamentals that are sometimes skipped over in the rush to be productive. Some knowledge of object-oriented programming and very basic applied linear algebra will make learning easier, although anyone can benefit from this book.

目次

Chapter 1 - Introduction to Scikit-Learn Chapter 2 - Classification from Simple Training Sets Chapter 3 - Classification from Complex Training Sets Chapter 4 - Predictive Modeling through Regression Chapter 5 - Scikit-Learn Classifier Tuning from Simple Training Sets Chapter 6 - Scikit-Learn Classifier Tuning from Complex Training Sets Chapter 7 - Scikit-Learn Regression Tuning Chapter 8 - Putting it all Together

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

ページトップへ