Harmonic and applied analysis : from radon transforms to machine learning

著者

    • De Mari, Filippo
    • De Vito, Ernesto

書誌事項

Harmonic and applied analysis : from radon transforms to machine learning

Filippo De Mari, Ernesto De Vito, editors

(Applied and numerical harmonic analysis / series editor, John J. Benedetto, 103)

Birkhäuser, c2021

  • : [hardback]

大学図書館所蔵 件 / 1

この図書・雑誌をさがす

注記

Includes bibliographical references

内容説明・目次

内容説明

Deep connections exist between harmonic and applied analysis and the diverse yet connected topics of machine learning, data analysis, and imaging science. This volume explores these rapidly growing areas and features contributions presented at the second and third editions of the Summer Schools on Applied Harmonic Analysis, held at the University of Genova in 2017 and 2019. Each chapter offers an introduction to essential material and then demonstrates connections to more advanced research, with the aim of providing an accessible entrance for students and researchers. Topics covered include ill-posed problems; concentration inequalities; regularization and large-scale machine learning; unitarization of the radon transform on symmetric spaces; and proximal gradient methods for machine learning and imaging.

目次

Bartolucci, F., De Mari, F., Monti, M., Unitarization of the Horocyclic Radon Transform on Symmetric Spaces.- Maurer, A., Entropy and Concentration.-Alaifari, R., Ill-Posed Problems: From Linear to Non-Linear and Beyond.- Salzo, S., Villa, S., Proximal Gradient Methods for Machine Learning and Imaging.- De Vito, E., Rosasco, L., Rudi, A., Regularization: From Inverse Problems to Large Scale Machine Learning.

「Nielsen BookData」 より

関連文献: 1件中  1-1を表示

詳細情報

  • NII書誌ID(NCID)
    BD00498971
  • ISBN
    • 9783030866631
  • 出版国コード
    sz
  • タイトル言語コード
    eng
  • 本文言語コード
    eng
  • 出版地
    Cham
  • ページ数/冊数
    xv, 302 p.
  • 大きさ
    25 cm
  • 分類
  • 件名
  • 親書誌ID
ページトップへ